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All Inénii-Wigner contractions of the real four-dimensional Lie algebras are found. The results are

summarized in tables.

1. INTRODUCTION

In recent years, the low-dimensional real Lie alge-
bras have come under intensive study. A complete
classification into isomorphism classes of all the real
Lie algebras of dimension less than or equal to five
has been found.! The real nilpotent Lie algebras of
dimension six have also been classified into isomor-
phism classes.? A complete classification into conjugacy
classes of all the subalgebras of the real Lie algebras
of dimension less than or equal to four has been found.®
All Casimir invariants, all rational invariants, and all
general invariants of all real Lie algebras of dimen-
sion less than or equal to five and of all real nilpotent
Lie algebras of dimension six have been calculated.*
All Indonu—Wigner contractions of all real Lie algebras
of dimension less than or equal to three have been
found.® The deformations of the three-dimensional real
Lie algebras have been studied.®

This interest in low-dimensional real Lie algebras
(groups) stems mainly from the fact that the low-dimen-
sional Lie algebras (groups) occur as subalgebras
(subgroups) of higher-dimensional Lie algebras (groups)
that are likely to be of direct concern in physical ap-
plications. For example, in the theory of induced rep-
resentations of groups, representations of subgroups
are used to construct representations of the full
group.”’ In representation theory, chains of subgroups
of a group can provide sets of commuting operators
whose eigenfunctions provide bases of representation
spaces for the group. Knowledge of the subgroups of a
symmetry group supplies an approach to the study of
broken symmetries.® Furthermore, the low-dimensional
Lie algebras (groups) are of interest per se, by pro-
viding a convenient supply of examples to use as a
basis for trying to extend the mathematical theory of
the structure and properties of real Lie algebras
(groups) and their representations.

Segal® was first to suggest a kind of limiting process
among Lie groups and Lie algebras. This was followed
by the studies of Inonu and Wigner,'® where a different
limiting process was introduced and called a contrac-
tion. Saletan'! generalized the notion of contraction in
such a way that the Inonu—Wigner contraction appeared
as a special case. Doebner and Melsheimer!? intro-
duced another generalized notion of contraction, called
a p contraction, also having the Inonu—Wigner con-
traction as a special case. Conatser!® has studied some
of the relationships among these various ideas of
contraction.
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Numerous physical applications of contractions of
Lie groups and Lie algebras have appeared. In a study
of dynamical group descriptions of interacting sys-
tems,!* the contraction limit corresponded to the coup-
ling constant going to zero giving noninteracting sys-
tems. Contractions were used to explore the relation-
ships among various kinematical groups that had been
derived and to gain some insight into their physical
meaning.!® The Wigner coefficients of the three-dimen-
sional Euclidean group were obtained by contraction
from the Wigner coefficients of the four-dimensional
special orthogonal group.!® The relationship between the
conformal group and the Schrodinger group was
elucidated using contractions.'” Contractions were
used'® to study the relationships among various Lie
algebras admitting a relativistic position operator,!®
Finally, a contraction of the structural group of a fiber
bundle with Cartan connection was studied in a pro-
posed gauge theory of strongly interacting hadrons.*
It seems that the relatively simple Inonu—Wigner con-
traction has found the most widespread application.

The purpose of this paper is to find all Inoni—Wigner
contractions of all four dimensional real Lie algebras.
In Sec. 2, the method of Inonu—Wigner contraction is
briefly discussed and a few basic theorems are men-
tioned. In Sec. 3, the results of the contractions of the
four-dimensional real Lie algebras are presented.
Section 4 contains some concluding remarks.

2. INONU-WIGNER CONTRACTIONS

L =(V, ) will denote a Lie algebra, where V is the
underlying vector space over the field of real numbers
and u is the binary operation from VXV into V specify-
ing the Lie bracket of any two elements X and Y of V,
pX,¥)=[X,Y]. Let{X,}, i=1,2,..., n=dimV, be a
basis for V; then

n

M(Xi;XJ-):[X,;!XJ]: kZ=:1 (,‘éth,
where the numbers dgj are the structure constants of the
Lie algebra.

Let T, be a family of linear operators on V, para-

metrized by @, 0 <« <1, that is nonsingular for
@ #0. Define a family of Lie algebras L,=(V, u,),
where

B X, X)) =X, X ], =TT X, T, X, ], {1)

for all 4,j=1,...,n. Suppose T, depends linearly on &
and that there are complementary subspaces W and U
of V such that 7', decomposes as

© 1978 American Institute of Physics 1645



r.=(¢ 0+ ( 10> 2)
where [, and I, are the identity operators on W and U,
respectively, and A is an operator on W. Then, Inoni
and Wigner'® have shown that lim _,L¥ = LY exists if
and only if W is a subalgebra of L. L¥ is called the
Inonu—Wigner contraction of L with respect to W. The
operator A in (2) can be taken equal to 0 without loss of
generality. It was shown® that the result of contrac~
tion is independent of the choice of the subspace U com-
plementary to the subalgebra W. Furthermore, the
result of contraction is independent of the choice of
representative subalgebra from a given conjugacy class
of subalgebras.

To calculate all Inonu—Wigner contractions of a Lie
algebra L:

(1) find all conjugacy classes of subalgebras of L;
(2) select a representative for each conjugacy class;

(3) select a basis {Xl, - ,Xp} for each representative
subalgebra W, where p=dimW;

(4) find a complementary subspace U and select a
basis {X,,,,...,X,} for it, where n=dimV;

+13 *

(5) let T, act on the basis elements according to
T, X,=X, fori=1,...,p, and T X, =aX, for i
=p+1,...,m;

(6) calculate the Lie brackets [X, s X;ly» for all ¢ and
j, using Eq. (1);

(7) take the limit of & going to zero;
(8) identify the resulting contracted algebra LY.

In Sec. 3, the results of applying this prescription to
the case n=4 are presented.

A contraction for which LY =54, the n-dimensional
Abelian Lie algebra, is termed trivial, If LY =L the
contraction is called improper. Let L’ denote the
derived algebra of L. Several theorems are now listed
without proofs.!?

(1)If W=L, then LY=L,
(2) It W =10}, then L¥ =nA,.

Thus, contractions with respect to improper subalge-
bras are either improper contractions or trivial
contractions.

(3) If L =nA,, then L¥ =nA,, for all W. Abelian Lie
algebras have only trivial contractions.

(4) If W Z, the center of L, then L¥ =nA,.

(5) For any contraction, dimL¥’ < dimL’.
3. CONTRACTIONS OF THE FOUR-DIMENSIONAL
REAL LIE ALGEBRAS

Each table displays the results of Indnii—Wigner con-
traction for one four-dimensional Lie algebra. In the
table, the nonzero Lie brackets of the algebra are
given. The representatives of the conjugacy classes. of
proper subalgebras of the algebra® are presented in the
first column. All subalgebras leading to the same
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contracted algebra are listed together. The improper
subalgebras are omitted. The contracted algebras are
given in the second column. A table for the Abelian
algebra 4A, is omitted.

4. CONCLUDING REMARKS

The results of this paper are summarized in Tables
I-XXIX. Several observations can be made. Two of the
algebras (see Tables III, XX) have only improper and
trivial contractions. Three of the algebras (see Tables
XXII, XXVII, XXVIIl) have no improper contractions
with respect to proper subalgebras. There are many ex-
amples where the equality in Theorem 5 is obtained.

TABLE 1. Contractions of 4,24, The range of parameters:
—o<y<o, 0sp<T, €=21,

Nonzero Lie brackets  le;,e,l=¢,

Subalgebra representative Contracted
algebra
{ey}, feg cosd + e singl, fes, e}, 44,
{es, 05810 ~ e cosd], le,, €3, €4}
. 3 I o
fer + xleycosd + ey sing)l, le), e5, 241, A, D24
ley + x(ey cosd + e, sind), e},
ley + x(eg cosgr ey sing), eysing —e, cosd],
ley + xleg cosd + ey sing), e; sind ~ e, cose, ey}
' .
©y+ €(e,cosd + e, sind)}, Ay b Ay

1oy + €leg cosd + e sind), ey sind — e, cosd

TABLE 11, Contractions of 24,, The range of parameters:

—o<y<ee, € %1,

Nonzero Lie brackets le;, esl = ey, ey, e, =e,

Subalgebra representative Contracted algebra

L U P U DO |

10973 1€1 65 1025 € ¥ 4A,

E R SR 5 J ,

L€ s {(‘ 3 I€ jl(')l, ¢ 2}:1 ¥y crl}s {013 ()’l}a AEU/ 2Al

125 €375 055 €25 €4} €2, €45 €4}

I 3 > s > P

1€y €31y {01, Coy (’3},{%:@3,61} 2Ay

oy eeyl Ay b4,
o i . T , o

feg 1 eshy ey "\‘ 25 C2)y €+ gy 04, Ay Ay

J\Cl O3y @y COyf

I > I

{ep —eg), deg— ey, a0ty Jeg —eg, 4, Ay B A,

o 1y O
leg = €55 025 ¢4}

toy v xeghy fey v xey, o0} {eyr vey el Af 5w A, 0<lxl<l

" ve.. e A1, .
fev rxegy e,y Afrwdy,  Ix1>1
To 1 oo (ot By
et ce Ny ey roegl, e+ cey, el Ay
feyteey, el
PRI L1 40
€y ey Cat ey Al

TABLE IIl. Contractions of A, < A,. The range of parame-
ters: —= <y,y<eo, 0S¢ <,

Nonzero Lie brackets  leg, ¢4l =¢;

Subalgebra representative Contracted
algebra

leg v xeM et e, ept xley cosd + oy sind)], 4A,

ley, €, cosd + ey 5inel, leg, €, cosd + ey sind, e}

fey cosd + ey 80 + xe,l, ley, €, co80 + ey sindl, Ay A

ley + xey, 050080 + ey 8ino}, X 0,

ey ey, eq i vey, ‘71}
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TABLE IV. Contractions of A; ,&A;. The range of parame-
ters; ~o<x<o, €=%1,

TABLE IX. Contractions of A} ;@ A;,a>0. The range of pa-
rameters: —«o <x,y <o,

Nonzero Lie brackets [e,e;l=¢;, le,,e5]=0+e,

Nonzero Lie brackets  lej,e;l =ae; —ey, ley, e5l=e +ae,

Subalgebra representative Contracted aigebra

Subalgebra representative Contracted algebra

{91} {84} {e1, eZ} {ess ey {e15 €3, 64} 44

leg re e, {es+ xey}, leg + xeg, 00}, x = 0, Ay, T4
{61, €y + €64}3 {329 94}

feg+ xey)y {es,eq), leg + xeq, €15 €2} Ay,2B4,
fes+ xey, e}y {eg, €35 €4 A; 3 DA

TABLE V. Contractions of 4; ;&0 A;. The range of parame-
ters: —w<x<o, 0SS <y, €=x1,

Nonzero Lie brackets [ey,esl=ey, le,e5l=¢,

Subalgebra representative Contracted algebra

{e; coso + e, sing}, {e}, {eg, s 44,
feg cosd + ey sind, e}, {eg, €3, €4

{e1 cos¢ + e, sind + €eyl, {eg, €, + €y},
{ey + ceqye5+ xe))

Az 1O A

{es + xes), {es, e}, leg + xey €1 cosd + ey sing}, Aj ;A
les, ¢4y 1 COSH + €, 5Ind}, {e3 +xey,€q,€e5)

fesh fers e} feys e ey} 44
feg+ xe},x2 0,46y, 04}, feg +xeg, e, x>0 Ay b4y
{es+veygls {55 €ats les +xey, eq, €3} Ag Ay

TABLE X. Contractions of A3 3&&A;. The range of parame~
ters: —w <y, y<o, e=x1,

Nonzero Lie brackets leg, eyl =2eq5,ley, el =¢,ley,e5] = ¢y

Subalgebra representative Contracted algebra

led 44,
{ed}s {eys €4} Az pw iy
{62 + xe4}'; x=0, {625 04}9 {gl ? e‘l}s {01 s C2s 84} AB,QIVC Al

{eg = ey {eg = e55 00} Az, 54
fe1s €25 05} Ay il Ay
foy—estyet,y= 0,0 + cef] A,
fer +xey 0, x= 0 ALy

TABLE VI. Contractions of 4; ;@& A;. The range of parame-
ters: —oo<x<eo, €=x1,

TABLE XI, Contractions of A; ¢« Aj. The range of parame-
ter: 0s x<oo,

Nonzero Lie brackets lej,ejl=ey, [e),e5l=—ey

Nonzero Lie brackets  le, .l = ey, leg, 5l = ey, leg, el = ey

Subalgebra representative Contracted
algebra

fal To

le1ts {ea), fed}s {ers eals {ers eats 44

€2y 64}9 €19 €24 €4

for+ceyrxel,{eg+ cegl, feg+ cegl {eg+eeg, e}, Ay T4

gy e+ €e ), oy + €ey, ey + xeg]

{es+xeg, {5, €4}, {ey + vey, e}y {eg + vey, €5}, Az, g Ay

\
fe1s3024})s feas es, e4ys foy + xegy €, €%

TABLE VII, Contractions of A% ;&£ A4,, 0<lal<1. The range of
parameters: —© <x<ew, e=*1]1,

Nonzero Lie brackets  [e,esl=e, le,,e;l=ae,

Contracted
algebra

Subalgebra representative

}et} {02} fea}s {en e}s fers ety 44y

€35 €115 {15 €29 ey}

e +eeg), ley+ ee}, g + cey+ ey, A b A
fei + €ey, e} {eg, et ey, fey + ceyy 5+ xe,)
lea+xeyl, fes, e} feg + xey, e}, {eg+ xey, e, Af s Ay

€15 €3 eq}s {62 €3, ey}, [e3 + xey, e, 0

Subalgebra representative
fed 44

Contracted algebra

lo & vo
ey Fxeds ey, e Az i Ay
fers e25 03} Az g4y

TABLE XII, Contractions of Al,l“ The range of parameter:
—_—e L x<e,

Nonzero Lie brackets ey, el =c,leg, e = ey

Subalgebra representative Contracted algebhra

{elll’{ehez}'a{clsc”’c‘i‘f 4A1
{eats {es + xert, {ery 090, {on, 05+ veyl, Ay i 4y
]r_el,eﬁ Wa}:led ~\es,01,e2}>

feq + xey) Ay

TABLE XIII, Contractions of A% ,, @~ 0,1, The range of pa-

rameters: —x <x <o, €==+1,

Nonzero Lie brackets  leg, eyl =ae, leg, ey, le),el=0y0 ¢4

Contracted
TABLE VIII. Contractions of A (& 4,. The range of parame- Subalgebra representative algebra
ters: —o<x,y <o, B
. {e1fs {ea)s fery @b, ens sty ders eny 03] 44
Nonzero Lie brackets le,ezl=—ey, leg,e5l=¢ {er + €egl, log +vey}, {eg + xey, esh, log + €0y, 05} Ay Ay
Subalgebra representative Contracted algebra {eshs fers eqts {e2s €30 €4} A%,

fea)s fersedt» {ers €2 ey 44

{62! @q}, {els €2 0,1} Aa-—l'a-l lal>1

ley +xe}, 220, ey + xey, e}, x> 0, feg, 00} A @4 feas eafs o1 €2, 04 Apl, lal <1
{ea ey, {esy ey}, {es+ xey, €4, 09) As, B4y [easeqls ier,€as ey} At @ =1
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TABLE XIV. Contractions of A} ,. The range of parameters:

—oo<x <o, 0=¢<m,

TABLE XIX. Contractions of A}f, ~1<a<1, a= 0, The range

of parameters: ~ > <x<w, 0S¢ <7, €=11,

Nonzero Lie brackets

leg,eqd =ey,leg, el =y, leg el =€y 1 e

Nonzero Lie brackets

ley, ¢4 = ey, leg, el =aey, ley,e)) = €3

Subalgebra representative Contracted Subalgebra representative Contracted
algebra algebra

{eq cosd + e, sing}, {eg, ety {€g, €5+ xey}, 44, e}, {e1 coso + eg sind}, {e; cose + eg sing, e,}, 444

{e15 €05 €3 {15 €3} de1,4 €2y €3}

{es+ xegh, log + xeq, €} Ay DA tez+ €eghy {eg + €y +xey, {3, €1 + €el, Az DA

- +3 +

{es}s {ess e cOSO + ey 5ing}, & = 4w, {ea, e, 03+ xe} A}, 1t xop b o)

(2 €2} {12 €22 €1} Abl {edhs {e2s €4}y {eas €4 cos g + ey sing, Al

N i

TABLE XV. Contractions of A, ;. The range of the parame-

ters: —o<x<o, e=x1,

Nonzero Lie brackets  le,ejd=e,les, el =e,

{615 €35 €4}, 1, €1 COSD + &3 s, e}

TABLE XX, Contractions of Aﬁ;},, The range of parameters:

-..oo<x,y<oo_

Nonzero Lie brackets

leg, el = ey, ley, eyl = ey, leg, eyl =g

Subalgebra representative Contracted
algebra

ferdy {eals fe15 €abs feas €31 {015 €29 €5} 44,

{egs 4+ xeg}y ey, €, €4+ xeg) A,D24,

fey + €ey}, {es + xey}, leg + xeyy 3}, leg, €3+ €4} Ay DA

Jey+ xeq}, {eg, ey + xes), {es, €3, €4} Ay

TABLE XVI, Contractions of A, 4. The range of parameter:

-0 x< o,

Nonzero Lie brackets
(eg,e4] =ey+ ey

leg,eqd=ei, ey, e =) + ey,

Subalgebra representative

Contracted algebra

{el}s {eh e?}» {91 €3y 63} 44,

{ei + xe3}, x# 09 {ez}! {63}9 {elg 63}! A3,1t9 Al
{ey + xey, 62}, x# 0,4eq, 0

fe1s €4}y o1, e, 4} Al,

fed) A

TABLE XVII. Contractions of A}?, —1Sa<b<l, ab=0, The

range of parameters: ~o <x<w, €=21,

Nonzero Lie brackets

le;, e =e,, ey, e =aey, legy eyl =bey

Subalgebra representative Contracted
algebra

{ey + xey + yeg), feg + xeghy feg), {eg + xey, e+ e}y, 44,

leg}+ xeq, )y {e2s €3y {et 3€29€3

lep)s legs e+ xey + vegl, {egy €5 + xegty {eg, 24}, Al

{94, €1t xeg, eyt 3“33}’: {ezls €1+ xéy, ea}’ {eas €3y 94}

TABLE XXI. Contractions of A}%, a=0, b0, The range of

parameter: 0 S x <o,

Nonzero Lie brackets
les, eyl =ey+bey

le,, el =aey, ley, el =bey — ey,

Subalgebra representative

Contracted algebra

{e}, {ear es)s le1s 2, €3 44,

{ey + xez}, x> 0, ey}, fey + xey, €3}

A3 B4

{eq}, le1s e} fe2s €35 €4} A‘i:’é

TABLE XXII. Contractions of 4, ;.

Nonzero Lie brackets

[61964] =2e, [62:64] =e

leg, e5l= ey, leg,eql=ey+ey

Subalgebra representative Slog tg:;ted Subalgebra representative Contracted algebra
€15y 1615 € 44

{ei}s {eshy {edds {e1s €a}s fers sl 444 e, fers e L

{eas €3}y fers €25 €3} {eo}s fers eshs ey €0, €3} A1 4,

‘{{eﬁees}, {fz“{”wa}, {er +}€e{2+xe3},x:§0, Ay DA {es} At

€13 €+ €€375 @2y €1 + €€y, (€3, €1 + €3y, P

e + €eg,eqt xegt, x = 0 {esh fers e} A2
€1,€9,8 AL/2,172

{94}: {91,64}s {92’94}a {93, e4>a{31s€2»e4}, Aiig € a2 if 14’5

{ers €35 €4}y {€2s €30 €4 1€gs €4} Al

TABLE XVIII, Contractions of Aj%, —1<a<1, a=0, The

range of parameters: —o<x<w, 0sd<m, €=x1,

Nonzero Lie brackets

le;, el =y, ley, eyl =aey, leg, el =aey

Subalgebra representative Contracted
algebra

{eyl, {es cosd + e, sino}, leg, e, cosd + e; sing}, 44,

leg, €3}, f15 €3, €35}

{eg+ eyl ey + €ey+ xeg), leg, e + €03}, A1 B4

{ey + €e3, 5+ xe5}

{eah {ers €4}y fe4s €3 O8O + €5 singl, Agg

[e2s €35 €4, {e1s €4y €9 COSO + €3 Sind}

TABLE XXIUI. Contractions of A, ;. The range of parameters:

—w<y<ew, €=%1],

Nonzero Lie brackets

legs ezl =€y, ley, el =y, leg ] =— ey

Subalgebra representative

Contracted algebra

{erh, {ers eabs lers €3} 44,

{eats lests feys ea v €egly {er, eg, €4} A4,
les+xe}, {e, el len, e el e, e300 Ag DA
fey + ce5} Ay
{ea+ xey, e0]y ley + xey, €4} Ay
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TABLE XXIV. Contractions of A} 3, 0<|b /<1, The range of
parameter: € =+1,

Nonzero Lie brackets  ley, e5l=e, e, ¢,] = (1 +b)ey

leg, el = ey, leg, ) =bey

TABLE XXVII, Contractions of A% ;, a>0.

Nonzero Lie brackets

ley, esl = ey, leg, e = 2ae
leg, eyl =aey—e3, leg eyl = ey +ae,

Subalgebra representative Contracted algebra

Subalgebra representative Contracted algebra {e,} 44
{es}s {ess ey ders e3h 44y {eg, ek, feq, €9, 25} Az 1 DA
{ea)s {esh, fers €2+ €esly {eg, 0y €3} Az 1D A {ea} Ay g

{ey+ ces} Ayt {edd, legs et Ay
Te1s €30 4ty b= —1 R

A(1+b)"1,b(1+b)‘1 >0

{94}5 {ei! "‘4‘{: {el 2 €25 3.1}9 {21, €3, 64}: b= % i
Ab: 2 h<0

{929 e4}, {639 24} Ab,9

TABLE XXV. Contractions of A4 9« The range of parameters:
0s¢<m,

TABLE XXIX, Contractions of 4, ;5. The range of parameter:
_—0 Ly <o,

lej,esl=ep, ley,e3)l=e
leg, e =—ey,lep, el = ¢

Nonzero Lie brackets

Subalgebra representative
{ers 00} 44

Contracted algebra

Nonzero Lie brackets ey, e5]=¢y, ey, )] =2¢

{‘71} Az DA

leg, €4l = e, Leg, eyl = e {esh,{ers e, €3} As,3@ 4,
Subalgebra representative Contracted algebra 1(,4' Yleds eas 31} As,et‘ti‘Al
{e1}, le1, &, cosd + ey sing} 44, e+ xegt, x = 0,{ey, ey €+ xe5}, x = 0 APha A
{es coso + ey sind}, ley, ey, €3 Ay DAy ler, €3} A%,
{eds fes eghs {ers €45 @y oSO + 23 s} Ay n? less et App

{e1, €5 cO8P + 23 sind} Ai, 9

TABLE XXVI. Contractions of A} 4. The range of parameters:

—o<y<o, €= 1,

Nonzero Lie brackets  [eg,e5l =ey,ley, e =, ey, e,] =,

Subalgebra representative Contracted algebra

feit, {o1s @2}y {015 25} 44,

{eg), {es)y fey, ep + cegh, 1ey, €5, 25} Ay D4y
{eg+xe},x =0, {ey, ey, ,+xe3}, x =0 Aj 00 Ay
{esh {es, eq +xeaty {er, €5, €415 {0y, €95 €4} Az 304y
ley+ ces) Ay
{egs eq}s feas €4} Al

TABLE XXVII. Contractions of A4, ;), The range of parameter:

—0 < x<o,

Nonzero Lie brackets  [ey,ejl=e,ley, el =—ey,le;,el=0,

Subalgebra representative Contracted algebra

{er} 44,

{91»‘32}, {91992’63} AJ3,1@A1
feg+xei}, feor, e Az, 6t 4y
{82} A.131
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Mesonic test fields and spacetime cohomology?
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We prove the following theorem: Classical spin-0 and -1 mesonic test fields that can be constructed on a
given spacetime manifold determine at least some of its de Rham cohomological structure. We explore this
result and give some examples. The extension of the present technique to higher spin is also discussed.

1. INTRODUCTION

Teitler! and Hestenes? have consistently used and
developed the Clifford—Dirac algebra along Riesz’s®
geometrical interpretation in order to unify geometrical
and physical concepts in classical field theory.
Hestenes® has specifically suggested the search for a
topologico—differential connection between fields and
the underlying spacetime structure. In the present
note we introduce one such bridge between physics
and geometry with the help of Teitler’s equation for
spin-0 and -1 mesonic fields.® It has the form of some
theorems that relate mesonic test fields defined on a
spacetime manifold to the underlying space’s de Rham
cohomology. We also show that despite the fact that one
has a Teitler-like equations for the gravitational field
itself, ® the present technique cannot be generalized to
that equation. Actually it cannot be applied to spins
higher than 1,

2. THE MAIN RESULTS

We start from Minkowski spacetime V, witha +2
metric g,, and an associated Clifford—Dirac algebra
C, generated by the four anticommuting ¥’s subject to
[,7],=2g%". Teitler’s equations are summarized in
the Dirac-like equation

(V+mh,=0, i=0,1, 2.1)

with V=y*2 , ¥ =-mi+ P v*, ¥1=~md y*+ §¢uvy'““
(¥, describes a massive spin-0 field, ¥, a massive
spin-1 field, and ¥ »® is Teitler’s wavefunction for the
pseudoscalar meson).

We can identify C, with its associated exterior algebra
A=@%1 JA* 7 This association induces an exterior-
algebra representation of Dirac’s operator V=d ~ 0,
where d is the exterior derivative acting on A and & the
associated divergence., With the help of this notation
and of ¥ o) = ¢, V(o =, ¥, =d0",
¥ (12 = ¢,,Y*", the spin-0 equations implied by (2.1)
are

W gy = — 13 (010, (2.2)

a¥ 4y, =0, (2.3)

W oy =AY (5305 (2.4)
and the spin-1 are

W 1y == m?W 41, (2.5)

AV, =0, (2.6)

A Ppartially supported by FINEP,
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2.7
(2.8)

Vi =d¥ 1,
0¥ ,,,=0.

When going from Minkowski spacetime V to a pseudo-
Riemannian one, M also endowed with a +2 metric
Gupy Y V=9V, V, being the covariant derivative
with respect to ¢, and V=d -0, with ¢®*=06=0,
Equations (2. 1)—(2: 8) keep their form but for the
substitutions Vi~ ¥, d-d, and 6+ 5, We have,
however, no reason to assert now—on physical and on
mathematical grounds—that the relationship between
fields and potentials [Egqs. (2.4) and (2.7)] may be
smoothly extended over the whole manifold: Being
differential relations, the field equations are a purely
local affair, and we can always have nonsmooth and
sectionally continuous potentials (see Sec. 3 for an
example: the same remark has been made by Goldberg
in a similar setting®).

Now Egs. (2.3) and (2. 6) say that the fields ¥ ,,, and
¥, are 1- and 2-cocycles; we note their set, .’ and
Z %, respectively. Some of these cocycles will be
coboundaries, that is, will have potentials smoothly
defined all over the manifold; denote their collections
At Tt and A% 2. The kth order de Rham cohomology
groups for spacetime, k=1, 2, are then D*=.%/5%°
To get /)® see that Eq. (2.1) applied to the wavefunction
V37 for a pseudoscalar massless meson leads to

6\11(0)3:03
’[\I’(m:z:Oa

2.9)
(2.10)

where ¥ g, = (= ¢)""? % ¥, * being Hodge’s star
operator.” Clearly the set of all such cocycles is 2%,
and from the obvious definition for A%< .=° one gets
*=.2/3% The de Rham cohomology groups for il,

A, [?, and /)® have thus been obtained with the help

of mesonic test fields defined on that spacetime mani-
fold. /)"=1R '” since we suppose M to be connected.

7)* is left undetermined if M is noncompact: for compact
spacetimes (which are usually ruled out on the ground
of causality considerations'!) )% =1R.

We may summarize as follows the above reasoning:

Proposilion 1: Let M be a four-dimensional Hausdorff
manifold endowed with a + 2 metric. Let ._* be the space
of all spin-0 mesonic test fields defined over M, .-
the space of all spin-1 fields similarly defined, and P
the space of all zero~mass noninteracting pseudoscalar
fields on M. Then:

(i) If M is noncompact, _', _*, and ..* determine the

de Rham cohomology groups ), 72, and J? for A,
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(ii) if M is compact, 2*, 22, and Z° completely
determine the de Rham cohomological structure
0 :G‘EZ:OD;Z for M.

Suppose now that one compactifies M with the help
of some standard technique—for instance,
Alexandrov’s,'? which is equivalent to Penrose’s' but
for the identification of all infinite points. This can be
conformally achieved as follows: Let v,¢ M be a suitable
reference-point; for any other point x€ M, let d(x,x,)
be the extremal path length (with respect to M’s
Lorentzian metric) between x and x, (since M is path-
connected, one has always such a value). For a fixed
Yy, Put [d(x, x)]2=Q,(x); Q, is a mapping A/ ~ R, and
©2,(x)=0 over the pencil of lightlike geodesics with
Y, as its vertex, If we identify the set {xe 1 Q,(x) =0}
with the infinite point x_, we get a compactification
for M with 2, as the conformal factor.

Let M be such a compactification, the tilde denoting
here € ,-conformally changed objects on M. As it is
well-known, for noninteracting zero-mass mesonic
test fields, Eqs. (2,2)—(2.10) become:

6% (), =0, (2.11)

v, =0, (2.12)
for spin-0 scalar fields;

&Y, =0, (2.13)

av ., =0, (2.14)
for spin-1 fields;

& )5 =0, (2.15

AV ()5 =0, (2.16)

for spin~0 pseudoscalar fields. The space A"* of all
conformally changed massless noninteracting spin-0
fields generates /)'; a similarly defined A* for spin-1
fields generates /)%, and /V° generates /)°. Due to M’s
compactness and connectedness, J)*=/)"=1R. We have
thus

Proposition 2: Let M be_a conformal compactification
for M. Then A', A?, and A/® completely determine the
de Rham cohomology for M.

Observe that this compactification obviously and
drastically changes the manifold’s topological
properties. The compactification induced by the inverse
Riemann mapping p:S®— IR? changes a manifold that
admits a Lorentz metric (IR?) into one that does not
(S*, see Ref. 14), since the Euler characteristic
x(S?) =2+ 0, On the contrary the compactification of a
cylindrical spacetime $*XIR induced by the inverse
map p:S*xST S xR leads to one that admits a Lorentz
metric, for x($*xSH =0,

If we now write b, for the dimension of )*, we get the
Euler —Poincaré formula'®:
4

X(M) =2 (= 1)kb

k=0

k> (2.17)

b,, the kth Betti number of M, is the number of linearly
independent classes of cocycles on M. It is thus an
integer. Then,
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Proposition 3: If M is orientable and admits a Lorentz
metric, then it has at least one class of nonbounding
cocycles that represent spin-0 massless fields. If there
are nonbounding zero-mass spin-1 fields, their Betti
number b, = 2,

Proof: Since M admits a Lorentz metric, x(M)=0
=by=b,+tbh,-b,+b,. But by=b,=1, Asb,=b,as a
consequence of the Poincaré duality,*® we have 2b; =2
+b,., For b,=0, b, =1. Concerning the second state-
ment, see that h,=2 is the smallest nontrivial
solution for the preceding equations.

This result leads to an immediate corollary:

Covrollayy: Propostion 3 is valid for a compact space
spacetime M.

And also,

Pyroposition 4: Let M (resp. M) be a spacetime
(resp. compactified spacetime) whose de Rham
cohomological structure /) (/) is given. Then every
class of scalar, pseudoscalar and vector mesonic test
fields defined all over M (resp. M) must be compatible
with /) (resp. /).

That is, Propositions 1—3 are “if and only if* con-
ditions. Many such results on test mesonic fields can
be proved from standard theorems in de Rham cohomo-
logy; we especially note that the fields given by Eqgs.
(2.11)—(2.16) are harmonic with respect to the pseudo-
Riemannian metric g,,; there are thus further general
generalizations of the above results along the theory of
harmonic forms.

3. EXAMPLES AND APPLICATIONS

In the present section we give some examples in order
to show clearly the difference between cocycles and
coboundaries. We also discuss the cohomological
properties of some simple spacetimes.

Let us consider the cylinder C embedded in IR® with
rectangular coordinates and given by the equation
x®+y2=1. Define the two 1-forms,

(3.1)
(3.2)

a=(xdx +ydy) /(x* +y?),
B = (xdy —ydx)/(x*+y7?).

We will only consider the restrictions ¢, =«|C and
Bc=BIC. Trivially da, =df, =0, that is, both are
cocycles. We now show that while o is a coboundary,
that is, admits a continuous and adequately differenti-
able potential ¢, over C such that o =dd,, there is
no such construction for .. If we put z=x+ivy,

o =d(Relogz)! C and B, =d(Imlogz)| C, Re and Im
denoting real and imaginary parts of the function.

Re logz C is a O-form over C, as a single-valued func-
tion of z; that, however, is not the case with Im logz} C
which is not single-valued. The potential ¢ for o,

is then ¢, = Re logz all over C (actually over R®- ¢,
where ¢ is the z axis).

H

Let now T" be the closed path on C given by the equa-
tions x®+y2=1, z=0. It is easily verified that

,/vraczo
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while
J'rijc = 277.

In an elementary language we say that o is a gradient;
its circulation over a closed path must be zero. As

B, is no gradient its circulation has a nonzero value
for a conveniently chosen path,

The cylinder C is topologically $' xIR, where S! is
the 1-sphere. From the Kunneth isomorphism,*"

D(MxNYZH(MT O,

where the dimension of at least one of the cohomology
algebras J(M), J(N), is finite, M and N being
differentiable manifolds and ©* being the skew-symme-
tric tensor product, and with the help of the relations®

(3.3)

DR =R, (3.4)
DP(R™=0, p#0, (3.5)
DS =D"S" =R, (3.6)
DHSY =0, 1<spsn-1, 3.7
one can establish that
DS ¥XR) =R, (3.8)
DYS*XR)=1R, (3.9)
0¥ XIR) =0, (3.10)

Being one-dimensional, the cohomology group /)*(S* XIR)
admits just one cohomology class, which is represented
by the cocyele 3.

For a more realistic example let us consider a non-
compact manifold C’ embedded in R® with topology
S$?xIR? described by the polar equation p=1 (in R? with
spherical coordinates p, 6, ¢), and the remaining
rectangular coordinates u, v IR, Consider now the
2-form given by

wc,:p'2 sinéd6rde (3.11)
and restricted to C’. Over the close surface T defined
by p=1, u=¢p=0 (which is a 2-cycle) one has
(3.12)
This integral must be zero when taken over a close
2-surface if its argument is to be a coboundary.16
But as w,. represents the only cohomology class in
the group /)?(S*xIR?) =R, it is nonzero. The manifold’s
cohmological structure is given by

O()(Sz Xle} :Dz(sz X].Rz) :IR,

DI(SZX]RZ):D3(SZ XR2):O4(82X]R,2):0.

f‘:u,‘c,:‘lTT.

(3.13)
(3.14)

Another interesting example is given by a cylindrical
spacetime M with topology $*X IR (the Einstein static
universe and de Sitter spacetime have this structure).
Its de Rham cohomology is given by

DUS*xR)=D3S*xR) =R,
Di(S*xR)=0, i+0, 3.

(3.15)
(3.16)

Now let us get a conformal compactification for M.
Given the projection 7 :S*XIR~ S*, one can suppose the
fiber over any xc $*, 77'{x), to be a timelike path
belonging to the manifold. For a fixed cross section
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f:8°— S*XR, one can define the conformal factor
2,(x) as a function of d(x, x,), length of the fiber
segment between x,< f(S*) and x< 77 (v,), namely
Q.(x)=[d(x,x,)|?. such a length being constructed with
the help of M’s Lorentzian metric. The compactified
spacetime M =S$°xS', and has the de Rham cohomology

AHS3xSH) =R i=0,1, 3,4, (3.17)
0*$3x8t) =0. (3.18)

As we know from Proposition 3, Sec. 2, M admits a
nontrivial cocycle class represented by massless
spin-0 test fields, and no spin-1 nonbounding cocyeles.

4. DIFFICULTIES CONCERNING EXTENSIONS OF
THE PRESENT TECHNIQUE

Can we get a similar connection between higher spin
and the spacetime topology ? We have shown elsewhere'’
that higher-spin fields can be also derived from a
Dirac-like equation defined over a Cartesian product
x V of copies of Minkowski space. When passing to the
pseudo-Riemannian structure of a spacetime M and
its Cartesian products xM with itself, the interlocking
of fields and potentials through an exterior derivative
breaks down due to the noncommutativity of the covari-
ant derivative operator. But one still has a Dirac-like
equation for massless higher-gpin fields interacting
with the gravitational field, and for such an equation
there is no fixed set of subsidiary conditions due to
the gauge freedom associated with zero-mass fields:
the spin-2 case has been described by one of us® and
will be considered here. With the help of the notation
of” one may see that the field variable A (the Riemann—
Christoffel tensor defined on the algebra C,*C,) is a
4-form over the product M xM: more precisely
R ¢ A% 42 where --° belongs to M’s exterior bundle
and < is a symmetrized tensor product, But the
differential operators ¢}V, =V,=d, -0, are no
cohomology operators, that is, d5+0 and 6°#0, and
the field equations

51/\J :07
Jleoy

cannot be interpreted as we did in the spin-0 and -1
cases. Actually R will never be a cocycle, for the
Bianchi identities (4.2) may be written d,R + T'=0,
where d, is the partial exterior derivative acting on
first factors in a tensor product® and T is a linear
combination of Christoffel affinities. R is also a very
particular object a symmetrized element of one of
the various tensor products that add up to the module
of 4-forms over M XM, viz,,

(4.1)
4.2)

AHMXADNZAMYEAY MY A (M2 A3(M)
G APMYEAR(M) e A3 MY AT(M).

Being of a too restricted nature, it will not be useful

as a source of information about the manifold’s
topological structure associated with its exterior
bundle. This reasoning easily extends to any zero-mass
integral spin minimally coupled to the gravitational
field with spin =~ 2.
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5. CONCLUSION

We can summarize as follows our results: Meson
fields are naturally and directly connected to the global
topology of spacetime; higher-spin fields, however,
have no such clear-cut relationship with the manifold’s
geometry due to difficulties in the construction of
cohomology operators associated with Dirac’s
differential operator,
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Continuum S state wavefunctions for the Debye potential

by Ecker-Weizel approximations?

B. Talukdar, R. N. Chaudhuri, U. Das, and P. Banerjee

Department of Physics, Visva-Bharati University, Santinikeran 731235, West Bengal, India

(Received 26 July 1977)

Analytical expressions for the continuum eigenfunctions for the Debye (Yukawa) or shielded Coulomb
potential are derived by using Ecker—-Weizel approximations. The results are used to obtain the S matrix

in closed form.

The eigenvalue problem involving the Debye or static
screened coulomb potential V{r)= - elexp(— av)/7 @
= the screening parameter] is relevant to several areas
of physics.' Particularly, the fundamental importance
of this potential in studying the properties of interacting
Boltzmann particles has motivated a large number of
works, both numeric and analytic in nature. The scope
of the analytical approach to the problem is, however,
limited because of obvious reasons. In spite of this, the
analytical work of Ecker and Weizel,? dealing with the
discrete eigenvalue problem, has recently received a
considerable attention. For example, Lam and Varshni®
have revised the expression for the Ecker—-Weizel
eigenvalue. The modified expression has been found to
yield better energies than the original one. In the pres-
ent note we shall derive analytical expressions for the
eigenfunctions as well as the S matrix for the Debye
Hamiltonian.

The s state radial Schrodinger equation for this po-
tential is given by

2 =B
d* =0

1 ¢
E .Z(TH)+[ p

1]

—E] (rR)=0. (1)

We shall use atomic units (e=h=m, =1) throughout.
Here § = @a, a dimensionless screening parameter, In
the units used the first Bohr radius q,=1., The standard
substitutions

YR=¢"" () 2)
and

oy =—1n(l —x) (3)
with

E =50} (4)
transform Eq. (1) in the form

.\’(1—.‘()—% _BX%_ %mT-lx_T)@:O, (5)
where

3=1+2an/d. (6)

The object (2/8)* [x/In(1 - x)] is a slowly varying func-
tion of x and to a first approximation it is a constant®
- v given by

2Work supported in part by the Department of Atomic Energy,
Government of India,

1654 J. Math. Phys. 19(8), August 1978

0022-2488/78/1908-1654$1.00

2 v
y=gr (1=, ™
where 7 represents some sort of 2 mean distance of the
electron in the considered quantum state, With this
approximation Eq. (5) has been solved to get the ex-
pression for the eigenvalue

11 1—e™ néT

Byl e ) ®)
To obtain the bound state eigenfunction of Eq. (5), we
assume

v(x) =x"(1 = x)*f (x). (9)

The wavefunction vanishes at x =0 [r=0], It also van-
ishes at ¥ =1 [r=+], Combining Eqs. (5), (7), and (9),
we get

[x(1=x)F" () +[2p(1 —x) = By = 2ax [ f'(x)

N /\O\Ziiﬁ)x u(u—lx)(l—x) —Buﬂ]f(-\’)

-0. (10)

-2+

Here primes on f denote differentiation with respect to
x. If the parameters . and x are chosen to be =1 and
x=1-3, the factor of f does not depend on x and the
equation reduces to the hypergeometric differential
equation

x(L=x)f ) +{2- G- Bxlf' () -2 - Byl (x)=0. (11)

This leads to the well behaved (unnormalized) bound
state solution

(rRY= e (1 — &™), F (a, b;c; 1 = @7°), (12)
where
a=3z[3-p+¢],
b=3[3-8-t], (13)
c=2
with
E=[1-8)+4y /2 (14)

Interestingly, the power series expansion of

JFila, b; ¢; 1 — ¢7°) together with o, =~ J2E, delineates
Eq. (12) in the variational form of the Yukawa wave-
function used by Hulthén and Laurikainén.* For subse-
guent discussion it will be useful to write the function
(vR) as the sum of two parts., The desired result can be
obtained with the help of well-known transformation
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formulas among the hypergeometric functions.’> We
thus have

r(3-1) o
TEA+B-eNTEA+8+EN"
X F (31 =B~8), 51 -B+¢£);2-85e7™)
+ r(l-p)
TEE -2+ NGB -8-1))
X, F(3(B+E=1), 3(8—¢ +1);8; e (15)

The continuum state solution (), regular at the ori-
gin, can be obtained from Eq. (15) through the analytic
continuation @, —~ ~¢k. This yields

W)= L (1 +2ik/5) .
2ik | T(1 +ik,/8)T (1 + ik,/0)
— ik, —ik 2ik .
I'(1-2ik/5) pritr
T(1—4k,/6)T(1 - ik,/5) *

XzFl(l—lzi: E%l‘;l*'zl—ék;e—a’)jl, (16)

(rR)=

e- Cknf

ikr

where
ky =k + (K = y8*)' /2,
Ry =k — {BF — 02 /2,

The two addenda on the right-hand side of Eq. (16)
transform into one another under the substitution

= — k. Following Newton, ® therefore, we conclude
that the nearest analog of the Jost function is given by

T(1+2ik/5)

D) = s 7era + ik, /)"

(18)
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Obviously, the Debye S matrix is
S=D(-k)/ D(k). (19)

As a usual check on the validity of the present approach
we find that, in the limit 6 — 0, Egs. (8) and (18) go
over to the corresponding quantities for the Coulomb
potential given in Newton. This can be accomplished by
noting that for the limiting case, y6~2, k,/6~2k/8 and
k,/8~1/k. The results of the present paper can be used
for the purpose of investigating the properties of the
Debye scattering amplitude. These can also be used as
starting points of perturbation calculations.
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Baylis and Huschilt pointed out that the Lorentz-Dirac equation with the usual constraint [X *(7)—0 as
T— o] for physical solution, may permit two or more solutions to some problems. We impose another

constraint to make the physical solution unique.

1. INTRODUCTION

The Lorentz—Dirac equation!'?

i = ”—[0; Fevy + %(}}“ - (‘ig u”z’t"z?v> (1)
is usually accepted to describe the classical motion of
a charged particle in a force field including the radiative
reaction. Here 1/b is equal to 2/3(e*/mc®), u* is the
proper time derivative of the position x*: ¥*=u" and
i =du*/dr. Equation (1) is a third-order differential
equation, For given initial values of x*(0) and #*(0),
Eq. (1) has infinitely many solutions. To ensure an
acceptable physical solution, one usually regards the
initial acceleration ¥*(0) as a parameter and imposes
the additional constraint!

lim x* (1) =0 (2)

Ta
to implicitly determine the initial acceleration param-
eter x*{0) and assume that one and only one such phys-
ical solution exists. In Ref. 3, Plass made rather ex-
tensive studies to determine the physical solution of
Egs. (1) and (2). He concluded that if the force field
satisfies some general criteria, then there always ex-
ists a unique physical solution to Egs. (1) and (2) for
given initial values of x*(0) and £*(0). He then argued
that one should accept the equation of motion including
the force of radiative reaction, Egs. (1) and (2), as an
exact equation for a charged point particle within the
framework of classical theory. But recently, Baylis
and Huschilt* pointed out that there are at least two
solutions for a specific problem. The second solution
of Ref. 4 exists only when the distance between the
rest particle and the force field region is very small
or the force field strength is very strong. Although we
can argue that in the case of such a small distance or
such a strong field strength, the classical description
is no longer valid, we should also not that, as in the
case of classical mechanics, when we consider the
complete classical equation of motion, we always as-
sume that the equation of motion is valid for all dis~
tances no matter how small and for all force field
strengths no matter how strong. We further assume that
the solution if it exists is unique, that is, we assume
that the mathematical description of classical theory is
complete up to any small distance and any strong field
strength in spite of the fact that in such a case the
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classical description is no longer adequate to describe
the actual physical situation. Thus we should reexamine
the constraint condition to determine whether it is
complete or not.

In Sec. 2, we use a specific problem to demonstrate
the following point, which is pointed out first by Baylis
and Huschilt in Ref. 4:

“The constraint condition is not complete, that is,
for a given initial values of x*(0) and £*(0), Eqgs. (1)
and (2) can have more than one solution.”

After examining these solutions, we find out that the
constraint condition can determine only the magnitude
but not the direction of the initial acceleration x*(0).
Thus we suggest in Sec. 3 one more constraint condi-
tion. The consequences of these constraints are dis-
cussed in Sec. 4.

2. SPECIFIC PROBLEM

We consider a particle of mass m and charge e moving
in the electric field E (r),

0, 0<»<r,

E(r)= ,
(r) Eor/v, v sv<sr

3)

0, Ve <V,

which may be regarded as the field created by an ideal
spherical capacitor. In this case, Eq. (1) becomes

. e u?\1/2 A uf. - (u-0)?
u_%<1+;2—) E(r)+b{“l_c2 [u u_(1+uz/cz)cz]}’
4)

where /Z=u-u and u=dr (1)/d7.
Consider the following initial conditions:
r{0)=0, r(0)=u(0)=0. (5)

The obvious physical solution of Egs. (2) and (4) is
r(7) =0. But if we assume the initial acceleration
2(0) to be

1(0) = ab, (6)

where ¢>0 and beb=1, then we can integrate Eq. (4)
step by step and easily see that

r{7)=+(7)b.
Equation (4) becomes
e u? 1. u?
ft=— = VE,+ ~|- &= —5% <y <),
¥ m(ljL c? ) o b[u e 1+142/02] (r, <7 <7
(n

This nonlinear differential equation can be solved by
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introducing the new dependent variable w(7) define by
the equation

1(1) = esinh[w(7)/c].

It can be proved® that if the distance 7, is sufficiently
small or the field strength E, is sufficiently large,
Eqs. (7) and (2) give us a physical solution with the
initial acceleration ¢ > 0. The unit vector b can be any
unit vector; this means that, for this specific problem,
we have infinitely many physical solutions so long as
v, is sufficiently small or E, is sufficiently large.

Now let us consider the following initial conditions:

r(0)=0, u(0)=use,, (8)

where 1,>0 and e, is a unit vector. If we assume the
initial acceleration u(0) to be

u(0) = q.e, + we,,

where e, *e,=0 and e, e,=1, then the motion of the
charged particle will be restricted in the (el,ez) plane.
If u, is sufficiently small, we have good reason to be-
lieve that Eqs. (7) and (2) have solution for a wide range
of #(0). For the special case a,=0, it can be proved
that for sufficiently small »,, Egs. (7) and (2) have two
solutions, one with g, >0 and the other with a, <O0.

3. ADDITIONAL CONSTRAINT

From the analysis of Sec. 2, we see the following
facts:

(a) In general, the LD equation, Eq. (1) restricted
by the condition, Eq. (2), has more than one physical
solution for given initial position and velocity.

(b) Among the physical solutions for given initial
position and velocity, every solution corresponds to a
direction of the initial acceleration u{0).

The constraint condition, Eq. (2), seems to determine
only the magnitude but not the direction of the initial
acceleration.

In order to make the LD equation a complete math-
ematical description, we can assume one more con-
straint to the LD equation. We suggest that the follow-
ing additional constraint should be added to the LD
equation:

“The direction of the acceleration U(r,) at any proper
time 7, should be in the direction of u_(+), that is
u(r,) = ol (7}) with o >0, where u,(7) is the classical
solution without radiative reaction, i.e., solution
corresponding to the case b — « with initial conditions
r.(7) =r(7y) and u,(7,) =u(r,) and 7} =min{rl 7> 7,,

U, (7)# 0}, If 7{=c, then U(r,) should be zero.” 9)

This additional constraint is very reasonable, for (1)
it is a covariant constraint, (2) it is sufficient to isolate
one solution for the specific problem discussed in Sec.
2, and (3) the particle only begins accelerating notice-
ably over a time interval of the order 0™ pefore the
force is applied and 5! is very small.

Now let us consider the specific problem discussed

1657 J. Math Phys., Vol. 19, No. 8, August 1978

in Sec. 2. After introducing the additional constraint,

Eq. (9), the problem becomes to solve the differential
equation, Eq. (4), with constraint conditions, Egs. (2)
and (9).

Consider the case of the initial conditions, Eq. (5),
then the exact solution for the classical motion without
radiative reaction is

r (r)=0, u,{r)=0, u.(r)=0.

Thus the initial acceleration a(0) should be zero accord-
ing to the constraint condition, Eq. (9) and the unique
physical solution is

r(r)=0, u(r)=0, u(r)=0,

The other solutions discussed in Sec. 2 become non-
physical solutions. We will come back to this point
later.

Consider the case of initial conditions, Eq. (8): the
classical solution without radiative reaction can be
easily obtained and

2\1/2
u () = i (1 + Z—g) Ege,.
Thus the initial acceleration 4(0) should be

u0)=ae,, @ >0.

The problem becomes a one-dimensional problem. It
can be proved that only one solution exists.

4. DISCUSSION

(a) For a given initial velocity and initial position,
LD equation, Eq. (1), with constraint conditions Eqgs.
Eq. (2), does not give us a unique physical solution in
general. The constraint condition, Eq. (2), seems to
determine only the magnitude but not the direction of the
initial acceleration,

(b) If we impose another constraint condition, Eq.
{9), which can be used to determine the direction of the
initial acceleration, we find out that it is sufficient to
isolate one solution among the many physical solutions
in the problem discussed in Sec. 2.

(c) The additional constraint, Eq. (9), is a covariant
constraint.

(d) It is still not an easy problem to prove that the
LD equation, Eq. (1) with constraint conditions Eqgs.
(2) and (9), does have unique solution for general
force field.

ACKNOWLEDGMENT

Interesting discussions with Professor Shaw Jiin-
Chang are deeply appreciated by the author.

Ip, A, M. Dirac, Proc. R. Soc., London A 167, 148 (1938),
2J. A, Wheeler and R. P. Feynman, Rev. Mod, Phys, 17, 157
(1945),

3G.N. Plass, Rev. Mod. Phys. 33, 37 (1961).

‘W.E. Baylis and J. Huschilt, Phys. Rev. D 13, 3237 (1976).

Kuo-shung Cheng 1657



The asymptotic behavior of bound eigenfunctions of
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An extremely simple technique for examining the asymptotic behavior of bound eigenfunctions of
Hamiltonians for single-variable systems is presented. A few simple examples are studied.

INTRODUCTION

During the last five years much work has been done
in determining the asymptotic behavior of bound eigen-
functions.!=® The specific case of a three-particle
system with asymptotically vanishing potentials was
studied earlier by Slaggie and Wichmann.!® Very recent-
ly discovered evidence strongly suggests that an opti-
mal bound should satisfy the differential equation as-
ymptotically,®° as does Slaggie and Wichmann’s bound.
We shall demonstrate this fact for a reasonably well-
behaved single-variable system. (A precise definition
of “well-behaved” will be given later,)

Theorem: Let W(x) be a positive differentiable weight
function defined on (a,«), where a can be either finite
or —», Denote W(x) (V(x) = E) by F(x). Suppose that
f(x) and g(x) are solutions of

L RN | A Y

—dx<Vv(X) dx)—F(A)f (1)
and

d dg\_ '

4 <W(x) % >_ Glog, @)

respectively, where f, g, f/, and g’ are all in L%((a, =),
Wi(x)dx). If there exists x, such that F(x)> G(x) and
g(x)>0 for all x> x,, there exists x} = x, such that

lF ) /Fle)| < glx)/glxd) 3)

for all x> x}. If g’ (x) <O for all x> x}, f'(x) <0 for
all x= x{.

Proof: By Sturm’s fundamental theorem,' f#0 for
xz x| for some x| > x,, sO we can take f to be positive
for x > x}. We multiply Eq. (1) by g and Eq. (2) by f
and take the difference between the new expressions to
find that

de_ W) gf' —fg' ) =(Fk) - ClNfg. (4)
We integrate from x, to x, where x; > ¥/, to yield

[(Wigr” -2, = [7 (P - GOAOg 0t 5)

Since the integrand is nonnegative, if there exists a
number x, > x, such that W(x,){g{x,)7’ (x,) = 7 (x,)g *(x,))
=b>0, then W(gf' —fg')= b for all x> x,. However,
then

[T gf (o) = fx)g" () Wixddx = +e2, (6)

which contradicts the hypothesis that f, g, f’, and g’
are in L2((a,~), W(x)dx). Thus for all x> x}, gf' —fg'
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=0, so f'/f=g'/g. Integration yields (3). Further-
more, since gf’ - fg’' <0, f'<0if g’ <0 for all x> x{.
QED

Similarly, (1) can be subtracted from (2) to yield
(W(g’ — ")) =Gg~ Ff, which in turn can be multiplied
by (g~f) to yield (g= F)W(g’ = 7)) ={g~ )N Gg - Ff).
Since (g-)W(g" = ) =g~ IW(g’ = f")) - W(g’
-2, g-F Wi’ =) = (g- ) Gg - Ff). Hence

[t~ rIW @ g 6 = (O],
> [ el) = rNGWet) - F@f (1) at. (M

If it is assumed that each factor in the integrand is
positive, it follows that g’ — ¥’ < 0 under the hypothesis
of the theorem supra. If g’ <0, 0< 1"t <lg’l. The
case x — ~ < can be treated analogously.

Hartman and Wintner proved a similar theorem with
no restrictions on f’ and g’ in which it was supposed
that W=1,12'13 The restriction on W is unnecessary,
for by letting f(x) =z (x)g{x) we obtain

Wgz" + (2Wg’ + Wg)z' + (G - F)gz =0, (8)

to which Theorem 2.46 of Swanson’s book is applicable.
The method presented supra is more direct than the
earlier techniques, and it also yields information relat-
ing f' and g’. The bounds on the derivatives are better
than some previously discovered ones.'*!” These re-
sults are more general for radial Schrodinger equations
than those found recently by Bardos and Mérigot,!®

If F(x) is approximated asymptotically by functions
G,(x), where asymptotically F/G,$1if 621 [i.e., for
any € >0 there exists 6 such that |1 - F(x)/G,(x)| <e
for all x greater than some x,], then the solutions g,
will provide asymptotic upper and lower bounds for
ffor §<1 and ¢>1, respectively. For a reasonably
well-behaved F, the asymptotic behavior of f is usually
considered to be given by lim,,, g,.

On a less abstract level, suppose that there exists a
constant x, such that V(x)» E if x> x,. Also suppose
that (W(V — E)'/2) is asymptotically negligible compared
with W(V — E), which is true for almost all physically
interesting systems. (This condition is the “reason-
Flx) = WxHV{x) - E) and Gy(x) = #W(x)(V(x) ~ E)
~ 8(W(x)(V(x) = E)Y/2)’ . The conditions outlined in the
previous paragraph are satisfied, so since
exp[ - 9]§D(V (t) = E)Y/2dt] is a solution of (Wg})’ = G,(x)g,,
we have asymptotically for any eigenfunction ) and for
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any € > 0
exp[— (1 +e¢ {" (V&) = EX/2at] < |wlx) A(x,) |
< exp[- —e)[ (V@) - EYX/2q1]. )

Under these circumstances we feel justified in saying
that the “optimal bound” is given by lim,_, g,=g,, and
it is clear that g, satisfies the differential equation
asymptotically.

SOME APPLICATIONS

This section is by no means intended to be complete.
It should merely illustrate the facility of using this
theorem to study the asymptotic behavior of bound
eigenfunctions.

This theorem allows one to derive the type of bounds

which Simon discusses for eigenfunctions of Hamiltonians

whose potentials are 0( x!2%).5 If V{x)> k| x|2®
—c(k>0,a >0), for any 0 < §<1 there exists x, such

that
Prixi?® = 6k alx|*t =G, (x) < Vix) - E (10)

for all x> x,. Since exp[- &Vk | x| **!/(x +1)] is a posi-
tive solution of g”(x) =G,(x)g(x), it follows that the
eigenfunctions of the above Hamiltonian in one dimen~
sion are bounded asymptotically by a constant times
this function. If @ >1, G,(x) < V{x) — E asymptotically,
so in this case the eigenfunctions are bounded as-

ymptotically by a constant times exp[- V% | x| **1 /(@ +1)].

Since in one dimension, functions in the domain of the
momentum operator are bounded,!® these bounds can be
extended to all x. Furthermore, if V{x}<k|x!2®+¢,
the reverse inequalities hold asymptotically for 6> 1
since the nth eigenfunction has at most n — 1 nodes.?
These results strengthen and generalize Simon’s theo-
rems for one-dimensional systems.

The next example is a central potential V in three
dimensions such that V is in L+ L~ and lim,_,, V(»)=0
For this potential the eigenfunctions of the Hamiltonian
are bounded.? For total angular momentum vI( +1),
an eigenfunction ¥ satisfies

(2 ) - 11+ 1) y) = (V(y) - E)y. (11)
Let ¢y =#'®. Since
2 (2 ) = LI+ 1)) = vi (=212 (3 214207 '), (12)

satisfies (Wo')' = F(»)® with W=+21*2 and F= W(V(»)
~E). Assuming that E <0 and letting

Go(r)=— PEr®* — 21+ 2)0V=Ey?4, (13)

we see that for any 0 < 6 <1 there exists 7, such that
G,(r) < F(r) for all »> »,. Since exp(- & ~E 7) is a
solution of (Wg') =G,(»)g, the eigenfunctions of this
Hamiltonian are bounded by K 7 exp(— &'~ E ») for all
v. The factor of #! can be removed by choosing a new
6" such that < ¢ <1,

In the example supra, suppose V(r) can be bounded
from above or from below by a homogeneous function of
7. We shall study the implications of these asymptotic
bounds on the potential. It will always be assumed that
the constant % is positive.

(Ia): V(r) < kr-1*¢ asymptotically, with 0 <e <1. We
let

1659 J. Math. Phys., Vol. 19, No. 8, August 1978

g0)=rtexp[- [ (kt*¢ = E)/2at, (14)
7o

SO

I3 7-24»6
“trg) = {—E+ Ry i+ o (1 =€) (k—m—-E—)m}

(15)
Eventually the last term will overwhelm any centrifugal

potential, so we conclude that there exists #, such that
for all r= »,

’ ()
b (vy)

Ty

) exp[—[ "kt - BY2at]. (16)

{Ib); V(#) = kr-1*¢ agymptotically, with 0 <e <1. We
let
glr)=r-t(kr*c - Ey'/*exp[- frr (kt-1*c — EN/2%dt],
0
a7

SO
23 7.-14»5 2
-l [ -1l+€ -2 jady - — _—
vitg) _{ Bkt [(4 (1 E’kr-1+e—E>

k (=2 +e)r-t>e
T4 (l'€)< R

k(l _6)7,-24-26
+ (k,},—he - E)2>]}g- (18)

The last term is asymptotically negative, so it eventual-
ly will “underwhelm” any centrifugal potential, so we
can infer that there exists #, such that for all = #,

U(r) K(”o “lee _ p)i/2
oyl (/’ Rt — EY/2q1). (19)

In (I) the integral inside the exponential can be re-
moved by expanding the integrand as a Taylor series
in £-1*¢ and then integrating this series term-by-term.
Only a finite number of terms need to be kept, for the
remainder tends to 0 as » becomes infinite. It will be
noted that these bounds have no dependence on the
angular momentum channel.

(I1a): V{r) < ky-? asymptotiéally. We let
gr)=r-tr-=(1 +pr-Y) exp(-vV=Er), (20)

where o =%/(2V~E). It is straightforward to verify
that

1,.-1(7g)~__~{_E+ f% + ;’1—2 1 +B I —[(2V-E8
+ o+ 1)@+ Bl +2)r-1)]} g (21)

By choosing § sufficiently large it is possible to make
the last term overwhelm any centrifugal potential, so
we conclude that asymptotically an eigenfunction i of
—VZ+ V is bounded from below by a constant multiple of

yr! @7 oxp(— VT Ey). (22)

(Ib): V()= kr~! asymptotically. This case can be
treated by letting e =0 in (Ib). We infer the existence of
an asymptotic upper bound of the form (22).

(Illa): V(») < ky-1-¢ with € > 0. We examine
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gr)=r-t(1 + Br-*)exp(- V= Er), (23)

with ¢ =min(l,e). Since

ﬁon'

") :{'E“L 1+pr

(Z«f——+(a +1)7 '1)}g,
(24)

we can always choose 8 such that the right side of (24)
exceeds V(r) +7-%1(l +1) - E. Hence there exists an
asymptotic lower bound of the form

rlexp(~v-—Ev) (25)
to an eigenfunction of — V2 +V,
(II¥b): V()= — kr~1-¢ with ¢ > 0. We examine

g@) =71 = Br-*) exp(- v= E7). (26)

Since

r"(vg)”={—E—fW - @V-E++1)r" )}g, 27)

we choose $ so large that asymptotically the right side
of (27) does not exceed V(¥)-E<V(r) +»-21(1+1)-E.
Hence an eigenfunction of — V2 + V has an upper bound
of the form (25). For potentials which are central and
tend smoothly to 0 as » becomes infinite, this result is
a generalization of one of de Alfaro and Regge.?

{Iva): V() s = kv-* asymptotically. We let

gw)=v1ye (1 +pr-Y) exp(~ V- Ev), (28)
where @ == k/(2V—E). We obtain the analog of (21):
IYSCIED N S S0 SRS SN P% o
rirg) _{—E 1’+72 1+ 8r-t [2/=E¢
+@ =Dl +8la-2))r)hg. (29)

By choosing § sufficiently large we can make the last
term overwhelm any centrifugal potential, so asymp-
totically an eigenfuncation ¥ of — V24V has a lower
bound of the form

y*/ @FE1L exp(— VZEv¥). (30)

(IVb): V()= - kr-! asymptotically. This case is
treated by setting ¢ =0 in (Vb) infra. We obtain an upper
bound of the form (30).

(Va): V(») < = kr-1*¢ asymptotically, with 0 <e <1,
Let

g(’r) =yl (= py-lre - E)i/2 exp [ (= Rt =t*e = )1/2dt],

(31)
sO

k (1—6) 24

-l " -1+€+ —_— — DAN——
r=(rg) { E-kr 2 (CrroeeC E)1/2

(_2+ 6)1"1"5 k(l —6)1"2’25 )
x(_kr'-l-re _E Er-"E) 8- (32)
The last term asymptotically overwhelms any centri-

fugal potential, so we infer that there exist r;, and
K(7,) such that for all »> 7,

';b(’r') > K('VO) [ f (_ bt- al+g E)I/Zdt] (33)

b(7,)
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(Vb): V(»)> — kr-1*¢ asymptotically, with 0 <e <1. As
in (Ia), we let

gr)=r-rexp(- [ (=~ kt-1— E)/%at), (34)

SO
7,-24&

k
=1 LA - =lee _ 2 —
r-irg) —{ E—bkr 3 (1 ~¢) Thr i

E)x/z}g-
(35)

The last term is negative, so it is less than any centri-
fugal potential, so we conclude an eigenfunction of
- V2 +V satisfies

i&f) < 7exp[f’ (- kt-m—m‘“dt], (36)

for all » exceeding some 7,.

Thus we have completely examined all cases in which
the potential V(») is asymptotically bounded above or
below by a function homogeneous in » of negative degree.
We have seen that there is no dependence of the gross
asymptotic behavior on the angular momentum. Although
the results of this section almost certainly are fairly
old, the author does not know of a comprehensive pre-
sentation of them.?® It has been seen that the method
outlined in the Introduction easily yields very sharp
results for the asymptotic behavior of bound eigen-
functions of Sturm~—Liouville operators.

Of course, we could use (7) to study the asymptotic
behavior of the derivatives of the eigenfunctions in
these examples, but presumably the technique is suf-
ficiently straightforward that doing so explicitly here
is not necessary.

Finally, we would like to present a general result on
the effect of a positive tail of a potential. Suppose
V=V,+V,, where V,>0, and -v?+V and - V2 +V,
are self-adjoint on the domain of —{V. Assume that
- V24V has an eigenfunction ¥ of energy E, where ¥ has
a finite number of nodes. If one can find a potential
V, such that V,(») =V, () for all » exceeding some 7,
and — V2 +V, has an eigenfunction & of energy E, then
asymptotically ¢ provides an upper bound to ). Normal-
ly one would find V, by adding to V, a sufficiently posi-
tive function with support in » < v, for a sufficiently
large 7,.

CONCLUSIONS

The “direct comparison” method outlined in this
article appears to be very useful for studying the as-
ymptotic behavior of self-adjoint second-order ordinary
differential systems. We see here a reflection of the
physical intuition that the more positive the potential
becomes asymptotically, the more quickly the eigen-
functions decrease asymptotically.

It is worth remarking that the applicability of this
method is quite insensitive to the short-range behavior
of the potential provided that the eigenfunctions are in
the domain of the momentum operator, which is a phys-
ically motivated restriction. This situation is in accord
with our physical intuition, for we would not expect the
short-range nature of the potential to influence the
long-range behavior of the solutions.

This theorem does not readily generalized to higher
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dimensions. The main obstacle is that the left side of
(5) is replaced with a surface integral of gvf-fVg,
and the components of this vector need not be
monotonic,

The bounds discussed in Eq. (9) are very similar to
the behavior of the wavefunction in the WKB approxima-
tion. However, the assumptions made in our treat-
ment are quite different, and indeed are completely
rigorous.

The theorem can be extended to the case of a finite
interval provided that the product Wy@’, vanishes at
the boundary for all #,% in the domain of the momentum
operator.

It should be mentioned that similar “Sturmian” tech~
niques have been used very recently to study the short-
range behavior of “charmonium” wavefunctions.2!'?®
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Projected basis set for the irreducible representation
{2N/2-5 125! of U(n)

C. R. Sarma and K. V. Dinesha

Department of Physices, Indian Institute of Technology, Bombay—400 076, India
(Received 29 August 1977)

The transformation properties of a projected basis for the irreducible representation (IR), {2%/275,13}, of
U(n) under the elementary generators of the group have been studied. It has been found that these
transformations are identical (to within a phase factor) with those of the standard bases spanning the given
IR. The correspondence between this basis set and the standard basis set has also been indicated.

1. INTRODUCTION

The realization of an orthonormal basis spanning the
irreducible representation (IR), {2¥/2-5 | 125} of the
unitary group U(n) is of basic importance in the study
of many-electron systems. The fact that the permuta-
tions belonging to the symmetric group, S,, on the
electron coordinates commute with the generators,

EU, of U(n) enable one to generate such a basis using
the idempotents {w 1r,s=1,..., /% [x]=[2V/>5 1>5]}
defining the algebra of S,.'~® In a recent series of notes,
Harter and Patterson®® carried out a detailed study of
this problem and generated the canonical Weyl basis.
Since these authors*® defined only the matrix elements
of the elementary generators, Ei;d (E,,;;) over the
Weyl basis through a set of “rules,” the handling of
general E; became quite complicated. Following this
work,*® Sarma and Rettrup® used a slightly different
choice for the reducible tensor basis of U(n) to obtain
the Young projections spanning the IR {2¥/275 125} of
U(n). A computer program was also developed to obtain
the matrix elements of general EU over this basis.”

The characteristic feature of the Weyl®® or the
Gel’fand'®""? basis spanning the given IR of U(n) is that
E 0 (E, ;) transform each of these basis functions inta
at most two others.* 13+ In this note we have attempted
a detailed analysis of the projected basis® under
E,  (E,, ;). We have shown that the transformations
induced in this basis are similar to that of Weyl or the
Gel’fand basis for {2¥/*" 1?1 of U(n). The transforma-
tion properties have been studied in Sec. 2, and a brief
discussion is presented in Sec. 3.

2. THE PROJECTED BASES AND THEIR
TRANSFORMATION PROPERTIES

Let {{¢%) u=1,N;i=1,...,n} form a basis for the
fundamental representation of U(iz). The direct product,
— ) 142 +l ...
D) = 101,02, - o200t g )

(1)

;g 5 e » ; ; y v e g
i<, < Ly lpe1 S pee ™ ~ Z,v~p)’

ptl
with [0, N -n]_, < p<N/2 -8, provides a reducible
tensor representation for the given IR of U(n). Using
the projection operators’+*
W = (FR/NDVE 35 [PRP, (2)
P=Sy
for the IR [x]={2¥/%"5 12S] of S, we find that the

1662 J. Math. Phys. 19(8), August 1978

0022-2488/78/1908-1662%1.00

nonzero projections,
il(b(ip):/rs>h:w:si ¢u,)>’ 3)

define a basis set spanning the given IR of U(n).® The
transformation induced by a generator, E,, of U(n) on
the basis set defined by Eq. (3), can then be
determined as®

Eijzd’u,,ﬁ”sy
=[P A
;—’/[ (7; ;H'”Tjﬂrj)]s's
% M(i},)?"\‘"'y’ @)

id{ikskzl’pb‘b—*—ls'e- ;‘V— f)} llp#li; iN-p)y
Eijl‘ﬁup): rs )t

= = ? ['P("i"iil""}ﬂr} )l};‘s

X \ d)(i’p): }’S'>)‘,

E,; ] ¢’(i,>; rs

=v2 2P

('273""71‘ ) (rlrzn-rj)]s's

x‘d)(i”

X
'7’8'>
(p+1)) ’ s

i‘pd S, Iy-p-

Restricting the above transformation to those
induced E,,,,, it is worth verifying whether this
projected basis also yields the same transformations as
the standard basis of U(n).* ' For this purpose con-
sider the projection resulting from a completely ordered

tensor product,
l(_b(’); TS}X (7)
:w:sl @{d)f e (p?-ld)?(biffl v %_p>.

If, further, in Eq. (7) p=N/2 - S, the only nonzero
projection which results for a fixed value of the

index » is { ¢y, 55,5 ¥1)* in the Yamanouchi ordering. *°
For such a state we can readily verify that all the
raising generators, E,;,,, of U(n) yield zero transfor-
mations implying that it is the highest weight state
(HWS) of the basis set. For an arbitrary state, ¢,
rs)*, consider the effect of E,,,,. We have, using

Eq. (5) and the fact that the matching permutation in
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this case is the identity,

N RO
E’»l ,I¢(,)-75>h—_l¢(’p)«73> s (8)
where
[ byys rs O
2, . 2 1.2 2p+1 .
=wylojol e ot ol - )

Thus, E,,, , does not change the standard tableau and
it replaces a doubly occupied orbital of Mb(p)) by a
singly occupied one. This result is similar to the one
given by Harter and Patterson* except for a phase
factor.

Consider now £y_,,, y.,i ¢,: ¥s)* where ¢, ., Is an
unoccupied orbital for 1¢,,). Using Eq. (4) and the fact
that again the matching permutation is the identity,
we have,

E crs Y =lof,rs ), (10)

N-p+1

where

\d)[’,,): rs )’

=wp, | o107 eplee e o (11)
This result is again similar to the one given by Harter
and Patterson, *

We now consider the rest of the elementary genera -
tors E,_,, (i=p +2,...,N -p) which yield nonzero
transformations on | ¢,,;#s)*. Each of these operations
leads to a contraction (¢,.,, ;) = (¢,.;, ¢,.,) and
according to Eq. (6) involves only the permutations of
the electron coordinates of singly occupied orbitals
of | ¢ . Hence, without any loss of generality, we
label the particle coordinates of these orbitals as
1,2,,..,N=-2pinplace of p+1,...,N, The same
considerations also imply that any change in the
tableau, s, due to the permutations of these coordinates
leads to others with relabeling in this portion of the
tableau only. In view of these considerations we intro-
duce a more convenient tableau notation,

y

q
§= 41

3 s E(ql’ d2s °"’qk)-

K| q, (12)

L - |

Using this definition, the projected state of Eq. (7) is

represented as
. A
| @03 7s)

:w:(”,...,,k)’ ¢0¢,1+1¢)92o2 : ¢p;¢.~1¢,4q N-2p> (13)

where ¢, represents the doubly occupied portion of
¢)(p>'

Consider, first, the effect of the raising generator,
Eqa -1 peq, On the state [¢,,1 7s)* of Eq. (13). On using
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Eq. (6) we have,

E e mq!@f:?; rs )

=v2 Z[P<q1)]:,5’¢f0”)l ¥s'Hh, (14)

st

where
PO =plabig -1, ¢,)¢, -2, q,-1) (15a)
subject to P =g, (15b)
and
| $lpers) = | DoPhre -1<PM -;¢7:+1 oy (16)

The permutation £'9) ¢ S, is over the first ¢, particles
defining the singly occupled portion of ' ¢,,). Further,
since | <b(,*1)) is symmetric in the first two particles,

L dlya1y; vs')*=0 unless s'=(2, ¢,, ...,q,). The use of
these results in Eq. (14) along with the behavior of the
IR’s of S, under elementary transpositions leads to

Eml_1 ml|®<f> s
=Ve [Py ](2,q 1o 10, ) (a g ranay)
X ‘ Dlpe1y’ 2G5, ...y gV
:-J—<q1 1 (P DR . 12} (1 razreanrdy)
+iqqll__—21)q—l[P(q -1)](2,«2, ,qku,,lq,qz,,,,',,k))
x ‘ (Mpn): r(2,q,, ... :qk)>l

:(—l)ql[qqil] ‘(b(p«fl)i ( ,qz,---,qk)yt. (17)

In going through the successive steps leading to the
12st equality of Eq. (17), we have made use of the fact
that terms such as [PV, Vageenary = 0 SiNCE
the Yamanouchi basis is sequénce z'idapted to
S JS 5. '“S ) 3,15

=
Consuier now, the effect of Em “1 pog, ON 1¢(P)
7lg -1, Qm---,qk)) We have

EP*"l'l P*qllqb(p); 7'((11 -1, ¢sy... ,(Ik)>)L

=2 [Pl

(2.q2100 iﬂk)qurﬂzvo-orik)

X I ¢’(»+1); 7(2’ ETRR ,qk)y‘

-1
— A
_Eb'uj'l Nul{ql - lwr(n'lyaz.““ak)

Vg, —z)ql ot
g, -1 7(q1195100050,)

-1 -
[ Goban Oyl g o1 ORGP
= —\/_2 [PV}, . Mg =1 q.e
ql_l CPSARL FRACHY ag000q,)
g, =2 qs
+ (= 1)'1[ _1] ——-——1_1}

X O1pa1yi #2020 o, q)0, (18)
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where the behavior of the Yamanouchi basis under
elementary tranpositions and the results of Eq. (17)
have been used and [ ¢(,,,,) is as given in Eq. (16).
Comparison of the first and last equalities of Eq. (18)
and simplification leads to

EP*41'1 P+q1.¢(p): ¥l - 1, Gayenn y(Ik)>A

i < (11—2 1/2
=D {’11_1]

KBty (2, G0y o g (19)

Combining the results of Eqs. (18) and (19), we can

also establish that

Ep+qlp+q]-1~ d),(p-rl): ;‘(25 Qoy«e- 7(1)z)>)t

1/2
(_l)q{[ £ } ‘d)(p):r(qu(IZ;"-’qk)y

g, =1

G, -2
l:(jl ] ld)(p) ((11"17(127---,(1;2»)\} (20)
1

and

|
PO
Eml pra 41 1D pys

/2
— (1) [(1_1_:_1]1
31

.(p(”l)

¥(¢1s Gaye e e ,(Ik)y

¥ (2 sy day- '7(1k)>x’ 1)

where

[ 0lpe1 ) = [ G0y Ppag Ppor ™~ " OV (22)

if g,#¢q,+1.

Thus if the contracted orbitals have one of their
particle coordinates in the first row of (g,, ¢»,...4,),
then the projected basis yields results similar to
those of Harter and Patterson® for the canonical Weyl
basis. The results obtained here for the matrix
elements were given by them® just as a set of “rules.”

We now assume that for the contraction of orbital
pairs ((bwa sy D ) (i=1,2,..., i) occurring in

LD r{qy) o, . qk)>" results similar to those in
of Egs. (17) and (19) are valid. The generalized form
of these results for the pair is

Ep+qj-1 p+qjl(bip): 'V((/ly Goyone ;qk)>)‘
BT [ it ity
T g, =-2j+1
P (23)
X]‘Dzwl):7'(2:{11+2,---,q]'-1+2,q1~u;---qu)>)‘,
Ep«-qj-l p+qj‘¢)(g): 7"((1“ (127"' ,(Ij - 17"‘ ’qk)>>L

(1) [ L= e
q; -2j+1

< “p:pu): (2,6, +2,... st 2, /SR PR ,qk)>xy(24)

where, in view of the orbital numbering used, j is the
row index of the subtableau and

l(bibﬂ)) l(z) (bp+q -l(bi#q -ld):d d)N 2P> (25)
Using Eqs. (24) and (25) we can also obtain the further
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results,

E,+qj pwqj-ll ¢)€pd): 7(2, a9 +27' . ’qj-l +2’ qjﬂ: e ,qk)>x

_ qj = 2j+2]/3
‘(—l)qj{[m |¢(p); 7’(‘11’QZ7"')(1,"°'
i

q; =2j 1? '
+[;1-;—:_——27+1] ‘qb(b)'r(ql’qz,--.,qj—l’_..

g

R
(26)

and

‘qb(p):r({[ly Goyees ,fjj, see ’qh)y\

~

= 9(p+qj+1,p+qj)

X i(p(g); T(qli qg, e ’q.j + 1’ qj#l” .. qu)>l b (27)

where

6 (p«qj-rl bl p#qj )

=[lg; - 2j +3)g, - 2j + )]"/?

xilg, -2 +2)E - g, -2 +3)},

(28)

pra; ¢l pra; T pve; pragy,

for qj-1< q]‘ < (Ij+1 ~1.

Using Egs. (23), (24), and (26)—(28) we now attempt
to obtain the results of the contraction of the orbital
pair (peg, -1y Ppeg,, ) OCCUTTING B0 [ D)1 7(gy, 0o v ).
Consider EP*G h P’“nll (p(p)* ((11; Goyeeesliy Qiurses s
g . Letg,=q,,, —m. If m=1, it can be readily
shown that this expression vanishes. If m# 1, we have,
using Eqs. (27) and (28), the result,

E
pha; 7t breg

X I G 7(Grs Goye e s lis Qinrs e - - ,‘1;?)>’L

=E,,

~

171 P *IQ(P'“;fl-m*l bra; vl

X i(bm; PGy s Guu=m+ 1, g0, 00,0 (29)
If m =2, we terminate the above sequence at Eq. (29).
If now we proceed further until we finally obtain the
state { @, 7(q1, @y« - - 1, ¢;015-..549,)) as
follows:

1die1 ™

LACFIRRE AL PN

de)(P);(IU Goyoeoo "m’qid"--y(lk))A

=FE

,qi-vl

n 8
L PR AL R AL Y

ordered

ielyprg =)

X|¢(p)§T(Q1’---yq¢+1_1y Giv1s e “qu)y‘y (30)
where the ordered product implies that the operator
corresponding to [ =j occurs at the extreme left
followed by the next lower value of I and so on. For

m > 2, Eew,,, p+,,, commutes with each of the operators
in the product on the right of Eq. (30) except

9@,‘,“1_1 pos, ). Further Epu, ., praier| Doyt V(s Gos e s s

din—1, qm,. g )t =0. Usmg these results and
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Eq. (28) we have

Al TR AL FIS)

X
XV @y Pdry oo v ey @i =My G pars e v 5G,))
- it Qi =20 e
_(_1) B
(7i+1 —21.—}
3 ~
x tI:Im 9(”"’i+\’m'”°i+1">Ev*aiu‘1 braje 72
{ordered)
XEP*QHI'I P*Giﬁ-l‘ (*bélpﬂ): 7‘(23 /3 + 2’ LI 7qi~1
T2, s ) ) (31)
where
2
Id);/pﬂ))‘ ’(DO a4 °®p+q. -2
i+l
3 N2
Kyt Oy (32)

The orbital (pm -1 is unoccupied in the product given
in Eq. (32). Hence using Eq. (10) we find that
Epsg;s)=t p+q;4 just replaces Dbra;e1 PY Porajay-1. In the
resulting state ¢p+,,,~2 is doubly occupied and Dora; -1
is singly occupied. The use of Eq. (8), therefore,
implies that Epeq,,;=1 s+, -2 just leads to the reversal
of the respective occupancies followed by a multiplica-

tion of the resulting state by (- 1), Thus,
EP*qiﬂ'l bra; ) (b(p): 7‘((/17 Goy-oo ,(]k)>)‘
;(— l)qiu qin _2(i+ 1)+2 e
N G, —-2G+1)+1
3 .
X IP 9“‘“1#1-1”’?"7141 ~1)
(ordered)
x ‘ (b?p,ﬂ) 7’(2; q1%v2,g,%2,... 3G -1 +2,
[Ii-f'l!"',qk))}‘y (33)
where
t¢2/;¢1)>: “i’n‘bé*q. -1¢§+q, ol o Kr-zP> (34)

Let us now consider the effect of 9(,” 12 Prag ) 01
the state given on the right of Eq. (32). The generator
Epiq; ,1-3 tw;,1-2 COntained in this operator can yield a
zero for this state only if ¢,., +2=¢,,, ~1. This, in
turn, implies that ¢,=¢,,, -1 or ¢,,, ~2. The first
possibility yields zero and has already been omitted.
If the second possibility is true, the right of Eq. (30)
consists of just one term whose effect is given by Eq.
(33) omitting the product of operators.

Thus

Y(G1yenesq,)) %0,

H(P"‘Gi 172 P+qi¢ 173

In these cases the effect of the generators contained in
the operators on the singly occupied portion of 1 ¢}y
is assumed known. Hence after simplification we have
the result

0

(b*a;+172y P*Qi+l'3)

ld)"'n)i 7’(2, q,+2,... ,q,--1+2, Givtyes- ’qk)>h
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. ’qk)y' .
(35)

= lgbﬁ*w (29 q1+29' '5qi-1+2, qi*l—l!‘

Using similar arguments for the other operators in the
product on the right of Eq. (33), we finally obtain

Ep+q“1_1-,+q“1|¢)(p);7'(‘11’ 4z . -;qi;qin,""qk)))‘
=20 +1)+27/2
i 3pdir1—al /T4 "y
( 1) [11‘4,1—2(1‘{"1)_1] ‘(b(p#l)a
7(2,q1+2"--:qi-1+2; qi+2y--°>qk)>ly (36)

where we have replaced ¢;,,-m +2 by ¢, +2.

Thus we find that the contraction of the orbitals
Dy, 1 Ppegns ,) vields a result similar to that given
by EQ. (23) welghted by a coefficient which depends on
the “city block distance.*’ The other results for this
orbital pair can be obtained in the same way,

3. DISCUSSION

The transformation properties established in Eqs.
(8) and (10) were relatively easy to obtain because the
matching permutation in these cases was the identity in
the corresponding Eqs. (5) and (4), respectively. Hence
the standard tableau index was not changed. This is
not generally true for the results in Eqs. (23), (24),
(26), and (27). In order to take account of this, the
transformation of Eq. (27) had to be considered first
before obtaining the inductive proof leading to Eq. (33).

The results of Sec. 2 were obtained for the restricted
class of tensor products of the type given in Eq., (7)
rather than the more general ones of Eq, (1). This,
however, is not a serious limitation. The ordering of
the orbitals given in Eq. (1) ensures that the transfor-
mation given in Eq. (8) requires only the identity per-
mutation. The proof for this case, then goes through
as before. Similar considerations apply to the case
given in Eq, (10). The transformations given in Egs.
(23) and (24) involve only singly occupied orbitals.
Hence we could have replaced all the orbitals in this
portion of Eq. (1) by a natural sequence which includes
the reference orbitals and retrieved the rest after the
transformation has been effected.

The projected basis, 1,,; 7s)*, of Eq. (7) permits
a ready identification with the Weyl tableau basis. *
For such a basis function [cf. Eq. (7)] having complete
ordering of the basis orbitals in the tensor product,
the corresponding Gel’fand tableau is also uniquely
defined. As an illustration, consider [¢lop?¢leple?;
r(2,5)'% 11! of U(5). This basis function corresponds
to the Weyl tableau

and is, in turn, uniquely identifiable with the Gel’fand
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tableau'®

On the other hand, suppose we have a projected basis

of the type given in Eq. (1). We can then relate it simply
to the nearest completely ordered basis through
elementary generators and identify the latter uniquely
as above. Consider | ¢lpZe%¢ips: »(2, 5)HIZ% of U(5).
We start with 1 ¢l¢Z3¢303; (2, 5131 of U(5) which
has the correspondence with the Weyl and Gel’fand basis

11 2 2 1 0 O
2 4 2 2 1 0
3 = 2 1 1 ,
2 1
2
respectively,

Using Eq. (8) we have then
| Bloteloted 12,5
=-E, l ¢}¢f¢3®‘§.<bj, r(2, 5)>[22'U'

In view of this result and the matrix elements of the
Gel’fand basis, we can obtain the unique identification

| plp2oteiod; #(2,5)) %0
2 2 1 0 0
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The existence of such equivalences imply that the pro-
grammed projected basis set”” provides the most direct
method for determining the matrix elements of the
generators of U(n) over the standard bases®' spanning
the IR {2¥/2-5 125}
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The Lorentz group in the oscillator realization. I. The

group SO(2,1) and the transformation matrices connecting
the SO(2) and SO(1,1) bases

Debabrata Basu

Department of Physics, Indian Institute of Technology, Kharagpur, India
(Received 14 March 1977)

The unitary transformation connecting the SO(2) and SO(1,1) bases for the principal and discrete series
of representations of the three-dimensional Lorentz group is determined by using the oscillator
representation technique. The Hilbert space and the SO(I,I) basis, in this realization, have a simple
appearance while the compact basis appears as the solution of an ordinary differential equation reducible
to the confluent hypergeometric equation by a simple substitution. The Taylor expansion of this solution
obtained by the use of certain functional identities yields the continuous spectrum of the SO(1,1)
representations and the unitary transformation from the compact to the noncompact basis after the

Sommerfeld~Watson transformation.

1. INTRODUCTION

The unitary irreducible representations (UIR’s) of
the group SO(2, 1) can be studied either through the
finite group® or through the self-adjoint representation
of the Lie algebra.? The representations in the former
method deal with the finite group elements and there is
no occasion to consider a specific subgroup in the re-
duced form. A more detailed description which is of
interest for further applications of the theory, however,
requires an explicit construction of the generators of
the Lie algebra in suitable Hilbert space and of the ma-
trix elements of operators corresponding to the group
elements. An investigation aimed at analyzing such a
level of detail proceeds by reducing the representations
under the compact® or the noncompact* subgroup.

A class of realizations of this genre is the so-called
oscillator representation, the discovery of which dates
back to the pioneering work of Schwinger® in the early
fifties. In this method the generators of the group in
a given UIR are constructed out of a set of harmonic
oscillator creation and annihilation operators in the
coordinate representation. The Hilbert space, in this
realization, has an especially simple form and consists
of square integrable functions defined on the plane.

Holman and Biedenharn® derived such operators for
the discrete series of UIR’s of SO(2, 1) and used them
to solve the Clebsch—Gordan problem for the group.
Mukunda and Radhakrishnan’ generalized these opera-
tors to include the prineipal series of UIR’s and used
them to determine the Clebsch—Gordan coefficients of
SO(2,1) in a continuous basis, Recently Wolf, ®? Boyer,®
Moshinsky!® and co-workers have established very
similar realizations of the generators of the Lie algebra
from entirely different considerations and have ob-
tained some important results on their exponentiation
to the group and on the representation spaces in which
they act,

It is, therefore, interesting to examine some aspects
of the UIR’s of SO(2, 1) in the light of these develop-
ments. The object of this paper is to show that the os-
cillator realization can be used in a simple and unitary
way to evaluate the transformation coefficients from
the compact SO(2) to the noncompact SO(1, 1) basis for

1667 J. Math. Phys. 19(8), August 1978

0022-2488/78/1908-1667$1.00

any UIR of SO(2, 1) belonging to the principal or the
discrete series. Our method is similar to that of a
previous paper® in which we studied the reduction of
the UIR’s of SO(3, 1) in the SO(2, 1) basis. In this meth-
od, a certain degree of uniformity is achieved in the
treatment of the discrete class of UIR’s on the one
hand, and the continuous class of UIR’s, on the other.
Similar problems have been considered by Vilenkin'?
(V), and recently by Kalnins'*(K), and by Montgomery
and O’ Raifeartaigh® (MO’R) amongst others.'® While
V obtains the finite transformation matrices, K deter-
mines the mixed basis and the overlap matrix elements
for the principal series alone. MO’R, on the other
hand, obtains the overlap functions between SO(2) and
a nonsubgroup basis. Our result for the principal
series [Eq. (2.24)] agrees with that of K. We, how-
ever, go, to some extent, beyond the work of our pre-
decessor, While the principal series alone is con-
sidered by K, we have succeeded in finding the trans-
formation coefficients for both the principal and the
discrete series [Eq. (3.9)].

2. THE PRINCIPAL SERIES

We start with a few remarks concerning the group
SO(2, 1) or its covering group SU(1, 1), The group has
three infinitesimal operators, J, generating plane
rotation, and J,, J, generating pure Lorentz transforma-~
tions, In a unitary representation these are Hermitian
and satisfy the commutation relation (CR),

[J,,d,]= =i, ., (2.1)
u,v,A=(0,1,2),
A possible solution to CR Eq. (2. 1) is obtained by the
choice”

Jy=3(ala, - ala,),

Jy=5la, P+ (a2 + (al? + (a,)?],

Jz ::i’ [((ZDZ - ((11)2 + (a;)z - ({12)2],
where a! and a; are the familiar harmonic oscillator
creation and annihilation operators in the coordinate
representation,

i 2 i ¢
a;=—— [v;+=— al=— [y, - —1.
t Np ( ¥ n,\’i)’ LY ( i ?’,\‘i)

(2.2)

{2.3)
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The operators (2, 2) are Hermitian under the scalar
product,

(f:g):ff dxldng*(xly xz)g(xlg xz)- (2- 4)
The Casimir operator has the form
Q=L- S~ == (;+5,
where S is a Hermitian operator given by
S =~ (ala} - a,a,). (2.5)

The construction (2.2), therefore, leads to the prin-
cipal series of UIR of SO(2,1).

To obtain the explicit form of SO(2) or SO(1, 1) bases
we need to consider the simultaneous eigenstates of
one of the generators J, or J, and the Casimir invariant
S. This is achieved by constructing the appropriate
eigenvalue equations in the regions D, and D, corre-
sponding to x,2 0, —x, <x, <x, and x, 20, —x, sx,<x,,
respectively. In D, we introduce x, =7 sinh7p, x,
=v cosh?”; the corresponding transformation in D, is
obtained by interchanging x, and x,. Both in D, and D,
the operator S has the form

. 0
S=~ a— (2.6)

-
2
In a given UIR of the principal series, we, therefore,
need to consider functions of the form

ﬂmeﬁzﬁ%e”W?WL (2.7)

The generators can then be rewritten as one-variable
operators in D

op _G(&  1d 457

Jod 4<d72+vd7+72 )

J‘Df’:—; ri+1 @
2\ dr

where ¢, = -¢,=1. The eigenfunction of the compact
generator in D; belonging to the eigenvalue m is ob-
tained by setting

x=7v2, fPi=xise*/2yDi(x),

The function y2{ is then a solution of the confluent hyper-
geometric equation which has two linearly independent
solutions,

V(%) =\ F

(e,m+ 3 +is; 1+ 2is;x),
2Di(x) =x7#s |F (e,m + 3 —is; 1 = 2is;x),

m:o,:{:%,ﬂ:l,.. (2.9)

It is evident that the solutions should be chosen such
that they fulfill the requirement of orthonormality. A
simple test shows that none of the solutions (2.9) con-
stitute an orthogonal set and these are, therefore, un-
suitable for use as basis functions. However, as we
shall see presently, an orthogonal set can easily be
constructed by taking insead of one solution a linear
combination of the first and second solution of the con-
fluent hypergeometric equation which are given by

Eq. (2.9). The appropriate linear combinations in D,
and D, turn out to be
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xS \F(m+ 3 +is;

; T(- 2i)T(m + % + is)
fflésums:exlz[ T 2

(m+ 5 =1is)

1+ 2is;x) + T(2is)x™ F m+ 3 —is; 1- 2is;x)] ,
(2.10)

2= (2.11)

s

To establish the orthogonality of the eigenfunctions
we first rewrite the scalar product (2. 4) with respect
to which the solutions are required to be orthogonal in
a slightly different form., Using Eq. (2.7) and noting
that the Hilbert space consists of functions of either
even or odd parity according as we restrict ourselves
to a continuous integral or half-integral class of re-
presentations, we obtain

(Fnss JFog) = 8(s = ) (m |n), (2.12)
where (m|n) stands for the following expression,
(m|ny= [ uk g, rdr+ Iﬁo uk u_.vdr. (2.13)

The rhs of the above expression can be evaluated in
the traditional way by using the Sturm—Liouville theory
of the second order differential equations and we have,

NI dur o du
(m|n)= ( =0 3 11m ) (14 y—gns umsv——ﬂédr>
du* « . du b
- < V——mdy ~ Ul ) .- (2.14)

Using the asymptotic form of the confluent hypergeo-
metric function and its behavior near the origin we
finally obtain

2

et (2.15)

{(m ' ) =h
where g(s) is equal to cosh®rs or sinh*rs according as
we consider the principal series of the UIR belonging
to the integral or half-integral class.

Since J, is a first order differential operator and re-
tains the same form in D, and D,, the normalized
S0O(1,1) bases are given by

-0 < [ < %,

21— L viwre, (2.16)

e
It must be emphasized that unlike the SO(1, 1) bases
fP1 which are orthogonal separately in D,, the SO(2)
bases are orthogonal in the entire x,-x, plane spanned
by D, and D,. The former is a consequence of the double
multiplicity of SO(1, 1) representations contained in
SO(2,1).

To determine the unitary transformation connecting
the two bases we expand the functions i, of the SO(2)
basis by using the Burchnall and Chaundy formula, '*

e 2 F (a;¢;x)

o My, —n
E:O} 2" I [ 2 ]x”. (2.17)
After simplification, the process finally yields
Uypms =D (tm + 5+ isH XS, +X35), (2.18)
where
Debabrata Basu 1668
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(2.19)

The expansion (2, 18) of the SO(2) basis function has
desired analytic form but contains inadmissible values
of 4. To circumvent this difficulty we express the sum
as a contour integral in the complex 2z plane (z=iu)
and apply the Sommerfeld—Watson transformation.
The various terms in the sum are easily recognized
as the residues at z=%is- 5—-n (#=0,1,2,...) of the
analytic function

_T(z+is+3)T(z-is+3)

Z)= Fm+z
Xum(2) T(tm+2z+1) 2
sm+ 5—is, tm+3i+is
1 -2-
X, F, 1 B
tm+z+1 (2.20)

Since for fixed |z | <1, [1/T(c)],F,(a, b;c;z) is an entire
function of the parameters, ¥,,(z) is a meromorphic
function going to zero rapidly as |z| tends to infinity

in the region Rez < 0. The singularities of x,,(z) are
simple poles arising from the T functions in the factor

T(z+is+3) T(z-is+%)
and, as shown in Fig. 1, are located at the points
2=Fis— t-n, n=0,1,2,... .
Let us now choose a contour C consisting of the in-
finite semicircle S on the left and the pure imaginary
axis. The singularities enclosed by the contour are the

simple poles mentioned above. Therefore, by Cauchy’s
theorem,
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1 o0
5 $dzy,.(2) =;§ Res [X*m(z)] emisntf2om

+ ,; Res [Xim(z)] zz+ig=1/2-n"* (2‘ 21)

The first and the second terms on the rhs by our pre-
vious analysis, are respectively equal to X}, and X3
and the integral on the lhs, as can be easily verified,
vanishes on S. The equation can, therefore, be written
as

T(zm+ s+is)[*°
”m:‘__zﬁ__“_,,, Xem(2)d2. (2.22)
Setting z=~ iy and rearranging the terms, the above

equation can finally be written in the form

_r(im+§+isf°d T(=ip +is+ 2D (=in —is+ 1)
Hams = Wr o CH T(wm—ig+1)

tm+5+is, tm+g—is
XZ"“”’"‘ZF]

; l‘ fus(x)-
tm ~ig+1

(2.23)
This formula immediately leads to the following ex-
pression for the transformation coefficient for the
UIR’s of the continuous integral class,
coshrs

(fms’ fut):‘s(s"t)'ﬂ,_\/"z—n_'

T+ 3+is)I{ =i +is+ 5T —ip—is+3)

% T(m-ip+1)

n+L+is, m+i—is
. 1
~ift=m A
X2 2F1 y 2
m—ip+1

+ (1M «—>—m)

(2.24)
For representations belonging to the continuous half-
integral class the same expression holds with coshrs
replaced by sinhrs. Equation (2, 24) exactly agrees with
the overlap functions for the principal series obtained
by Kalnins'® from entirely different considerations,

3. THE DISCRETE SERIES D,

To obtain the representations belonging to the dis-
crete class D}, we consider in place of Eqs. (2, 2) the
following set of generators, *~%

1
Jo=3(ala, + ala, + 1),

J]_:é[(a{)z+(a1)2+(a§)2+(02)2]9 (3) 1)

Jy== ZL[ (@l = (a,)? + (al)® = (a,)?],

These operators are again Hermitian under the scalar
product (2. 4) and since the eigenvalues of J, are posi-
tive definite the construction will lead to the positive
discrete series D}, The corresponding generators for
Dy are obviously obtained by replacing J, and J, by
-dJ, and - J,, respectively. As there is no essential
difference between Dj and D} we shall exhibit the de-
tails for D},

The Hilbert space for D; consists of all functions of
the form

ei(Zk'lmf(’V), (3. 2)

-

Sy, x,) =
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where 7, 6 are the usual polar coordinates, The opera-
tors (3.1) can then be expressed in the form

® 14 (2k- 1)2]
1 2 -—_

J"—“[T v R ’
. (3.3)
i d

J2:—§ [?’E; +1] .

The normalized SO(2) bases are now given by

v = F\fik) (rl“(m w;k) . \) V2 ere

( (m —k+1) (3.4)

X xRM2 R (—m+ Ry 2k; X),
where x=72, m=Fk, k+1, ... .
The normalized SO(1, 1) bases, on the other hand, are
fuk(x):% ez, (3.5)

Using the technique of the previous section we now have
for D3,

¥y e $2(<) Tl 4t k)
™ T m =k + 1) + B) no B! T(2k+n)
—m=k+1l, ~m+k (3.6)
X Fy ;é (z)mak-nxmkq/zq
—1-m=k+1

The series on the rhs can now be regarded as the sum
of the residues at z=—-k—~n (n=0,1,2,...) of the
analytic function

T(z+ k)T (m - z)2™*

e o
-m+k, ~m-k+1
X2F< ’,EA x-z-l/z.
z2—m+1 (3.7)

Note that the parameters of the hypergeometric func-
tion appearing on the rhs are such (lal < icl) that
this is nonsingular even when z is a negative integer.
The only singularities of y(2) that are enclosed by the
contour C of the previous section are, therefore,
simple poles at z=—-k-n (1=0,1,2,..,). Since the
integral on the semicircular part of C again vanished
we have

1
‘[1"(;47 —~k+ DT (m + k)27

X/*d T(k - ip)T(m +ip)2mit
- T +in)

¥

mhk =

-m—Fk+1

s Funlx).

-m +k,
X F,

i —-m+1 (3.8)
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The transformation coefficients are now given by

8w DR —ip)T(m+ipn)
o =R
( mk’fuk’) Vor fr(n1,—k+1)r(M+k)

-mtk,

ome-is —-m-k+1
X F .
3 ol y ’

Tk +iu) - —-m+1

tob
.

(3.9)
Equation (3.9) strongly resembles the overlap function

(2. 24) for the principal series.
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A simple derivation of the Onsager-Machlup formula for
one-dimensional nonlinear diffusion process
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Transforming the Fokker-Planck equation into a self-adjoint form the Onsager—Machlup formula for a
one-dimensional nonlinear diffusion process is derived rigorously. By approximating the Wiener measure
by an n-gate cylinder measure, an equation of motion for the most probable path is also derived.

I. INTRODUCTION

Motivated from the monumental works due to Wiener!
(Wiener process) and Onsager and Machlup? (linear
diffusion process), a program (i.e., the Onsager—
Machlup formula) to represent the transition probability
law of a nonlinear diffusion process in terms of integra-
tion over sample paths has been pursued by several
authors. =% Although they obtained the generalized
version of the Onsager—Machlup formula, their
derivations can not be justified mathematically because
they started with a formal expression of the Wiener
measure, Therefore, rigorous derivation of the
Onsager—Machlup formula for a general nonlinear
diffusion process seems to still be an open problem.

In the present paper we derive the Onsager—Machlup
formula for a one-dimensional nonlinear diffusion pro-
cess from a fundamental point of view:

First of all, we transform the Fokker— Planck
equation, which determines the probabilistic behavior
of the diffusion process completely, into a self-adjoint
form. Then making use of the Feynman—Kac
formula we obtain a rigorous expression of the
Onsager—Machlup formula,

Secondly, approximating the Wiener measure which
appears in the Feynman—Kac formula by an n-gate
cylinder measure we obtain a more familiar expression
of the Onsager—Machlup formula and derive an equation
of motion for the most probable path,

Il. ONSAGER-MACHLUP FORMULA

By the notion of a one-dimensional nonlinear diffusion
process we denote a stochastic process X =X(f) on the
real line R described by the stochastic differential
equation of Ité type,

dX(t) =a(X()) dt +b(X(t))dB(1), (1)

where B = B(t) denotes a standard Brownian motion
(i.e., a Wiener process with diffusion constant equal

to unity), @ =alx) a drift velocity, and & =b(x)} a diffusion
coefficient. A special case with a=0 and b=vVD D; a
positive constant) is known to be a Wiener process with
diffusion constant D, a=~ fx and b=vD (B; a positive
constant) lead to the case of a linear diffusion process
{(i.e., a Smoluchowski process) with damping constant

B and diffusion constant D,

The stochastic differential equation (1) is equivalent
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to the following Fokker—Planck equation,

Py, w) =~ =alp o, |y, )

2
+‘éap[b2(x)p(x,tl:v,u)], @

where p =p(x,t |y,u) with >« denotes a transition
probability density of the process X =X(f).

In the case of a Wiener process making use of the
Chapman—Kolmogorov relation and an elementary
solution of Eq. (2) with a=0 and b="D,

(x=y)°
4D(t - u)>’ @)

pu‘(x’t‘yyu): — Xp<—
VATD(t = u)

we can represent the transition probability density in
terms of integration over continuous sample paths

pw(xyt‘yxu):/(xl ;’“D(d')')’ (4)
Q\slu

where 1, denotes a Wiener measure® with diffusion
constant D and Q(;13) a totality of continuous paths y’s
starting from y at a time u# and arriving at x at ¢, !

In the case of a linear diffusion process Onsager and
Machlup? derived a similar but rather approximative
formula (i.e., the Onsager—Machlup formula) starting
with an elementary solution

3 1/2
27D(1 - expl~- 28(t - lt)]))

pslx, ¢y, ) ::(

8 fe-y expl= = u)If
x exp<2D 1 - exp[= Bt —u)]

(5)

In the case of a nonlinear diffusion process X=X({(t)
we can no longer follow the same procedure as Wiener
and Onsager and Machlup because it is difficult to find
an elementary solution of the Fokker— Planck equation
(2), Therefore, we approach the Onsager—Machlup
formula for a one-dimensional nonlinear diffusion
process X=X(t) from a fundamental point of view,

If we introduce a stochastic process Z =Z(i) by a
stochastic differential equation

dz (t) =b(X{t))" dx (1), (6)
we can transform Eq. (1) into
dzZ({t)=c(Z (1)) dt +dB(1), (7)

where c(Z(t)) =[a(X{£)) = 30" (X))o (XE)]/0(X (1) and X(/)
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can be written in terms of Z(f) through Eq. (7). Namely
it is enough, hereafter, to consider a diffusion process
X =X(t) with constant diffusion coefficient

dX(t) =a(X(t))dt +dB(t). (8)
We start with the Fokker—Planck equation

b0, tly, w) == lalpla, ty,w)]

2
+%7P(x,tly,u) (9)

equivalent to the stochastic differential equation (8).
By the substitution

plx,t|y,u)=qlx,t|y,u) exp{- 3[4A(x) ~AW)]} (10)
with A{x)= ~ ["a(x’)dx’, the Fokker —Planck equation (9)
can be transformed into a self-adjoint form?3:®?

%q(x,tly,u):(iiz+V(x)>q(x,t1y,u), (11)
where the “potential” function V{x) is defined as

Vix)= - A" (x)* + 34" (x)
(12)

The Feynman—Kac formula® asserts that an elemen-
tary solution of Eq. (11) is given by

q(x,t\y,u)zf exp(ftV(Y(s))ds>u(dv), (13)

a(;|%) “

= —4alxy’ - 3a’(x).

where 1 denotes a Wiener measure with diffusion
constant equal to unity. Correspondingly an elementary
solution of the Fokker—Planck equation (9) can be
represented in terms of integration over continuous
sample paths

p(x,tly,u):exp{-%[A(x) —A(y)]}

X'/n‘(xt]:)exl) <_/“‘tV(v(s))ds>u(dv)
¥

t
exp(—% /dA(V(s))
v [ votenas) uan, (14)

G -

because we have

ju‘ dAly(s)) =Alx) - Aly) (15)

with probability one.

The mathematical techniques explained above [Egs.
(9)—(14)] are essentially the same as those of Benes
and Shepp.'® In their article emphasis was put on the
derivation of the Feynman—Kac formula from the
Prokhorov formula!* making use of transformation (10).
In the present paper, on the contrary, emphasis is put
on the derivation of a special case of the Prokhorov
formula, which is relevant to the Onsager—Machlup
formula, in utilizing the Feynman-—Kac formula and
transformation {10).

Before we proceed with further manipulations with
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Eq. (14) it is worthwhile to notice two types of
stochastic calculus, that is, It6 calculus and Fisk—
Stratonovich calculus.” Namely the stochastic chain rule
in the Ito sense yields

dAly(s)=A'v(s))dy(s) +A"(y(s))ds (16)
and the one in the Fisk—Stratonovich sense yields
dAG(s)) =A"(y(s)) edy(s), amn

where A'(v(s))dy(s) and A’(y(s))edy(s) are the Ito
integral and the Fisk—Stratonovich integral,
respectively.

Finally we find that Eq. (14) can be written

petly= [ eXp(—%f‘A'(v(s))dy(s)
"R u

_iftA’(y(s))zds)u(dv)

u

- f(x‘)exp(é/ " aly(s)) dv(s)
a;{ u

-1 f'a(y(S))zds)u(dy) (18)

in the Ito calculus and

ple,t|y,u)

= f exp(—%ftA’(y(s)hdv(s)
e

u

-+ [Taerase [ 'A"(y<s»ds)u(dv)

u

4
f exp(% aly(s))ody(s)
;) ¢/

-t flavoras-i [Taoenas)ue) a9

u

Il

in the Fisk—Stratonovich calculus. Equations (18) and
(19) are rigorous expressions of the Onsager —Machlup
formula for a one-dimensional nonlinear diffusion
process X=X(¢). Moreover those expressions seem

to present a simple and special demonstration of the
Prokhorov formula'* which provides a Radon—Nikodym
derivative of the path probability measure of the process
X = X(¢) with respect to the Wiener measure p.

It seems worth noticing that the inverse problem, that
is, to renormalize such a Radon—Nikodym derivative
into a path probability measure, has been fully investi-
gated by Ezawa, Klauder, and Shepp.'?

1. MOST PROBABLE PATH

In the preceding section we have derived rigorous
expressions of the Onsager~Machlup formula for a
one-dimensional nonlinear diffusion process, Eqs. (18)
and (19). Although there remains no ambiguity in those
eXpressions, it does not seem clear that they are
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generalizations of the original Onsager —Machlup
formula for a linear diffusion process. Therefore,
more familiar but approximative expressions of the
Onsager—Machlup formula seems to be needed,

We show, in the present section, that our expression
of the Onsager —Machlup formula in the Fisk—
Stratonovich calculus Eq. (19) reproduces an approxi-
mative expression which may be a direct generalization
of the original one obtained by Onsager and Machlup. ?

It is convenient, following Onsager and Machlup, ? to

approximate the Wiener measure u in Eq. (19) by an
n-gate cylinder measure':®
expl - (x —va)?/4(t - 1,)]
dy)= ce
Hn( ¥) [477(t—-tn)]1/2
exp[- (v, = ¥V/4(t, —u)]
[ -] 201

with ¢>¢ >..->¢ >u. Namely, the transition
probability density p(x,#[y,u) of the one-dimensional
nonlinear diffusion process X=X{(¢) has an approxima-
tive expression

plx,t|y,u)
o fexpl- (x -y )2/4(t~t,)] - - expl~ (y, - »)?/4(t,

(')’1
1 (x+vy, 1
xexp| za\—; (x=y)+-- +2a( iy, =)
Xexp{[— i—a<x ;y,) ) %ﬂ,(v___;y,,)] (t-t)+
ool e (nry)] ) A

@n

- u)]

where we have utilized Eqs, (19) and (20) and the
definition of the Fisk- Stratonovich integral.

Now what is left for us is to replace each integration
in Eq, (21) by taking the maximum value in the
exponent;

plx,ty,u)

(JC 'Vn)z G _y)z\)
aexp{4 (————-—_t + +————~t1l_u

O P L |
Xexl’{[ ( (“’")] (t~1)+ N
+[-;a<&—;l>2-;w(ﬂ-;f>h-u>}
R S e
-3 (“Vu)](t ,;)+...+[ i(%:“f)z
o) g
,exp<{ [le=3)- (”?"ﬂz-%a’(x—%&)}“—m
<l

x (¢ —u)
max?

»J-“-lr—n

e,
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where ¥, denotes the most probable value of X( ¢,) for
j=1,2,--.

Passing to the limit » ~«~ we finally obtain an
approximative expression of the Onsager—Machlup
formula for the one-dimensional nonlinear diffusion
process X=X(t),

to
plx,t]y,u)x exp(=§ [ [¥(s) - alFis)]* ds

~ [ @ () ds),,

=exp[- fLOM(V(s ¥(s)ds] (23)

max )

where [ oy is the Onsager —Machlup Lagrangian for the
process X = X(¢) defined as
£ u(F(s), Fis)

= 3[¥(s) - a@(s NP + $a'(F(s))

Note that an equation of motion satisfied by the most
probable path y=7(¢) is derived by a variational problem
for the Onsager —~Machlup Lagrangian

t .
f“L QM(7(3 ),
that is, the Euler—Lagrange equation

2 (Low) Lou g

provides the most probable path ¥=¥%{¢) for the one-
dimensional nonlinear diffusion process X =X(f).

(24)

¥(s))ds = min, (25)

(26)

An equation of motion thus obtained from Eq, (26)
with Eq. (24),

¥(¢t) = a(@(1))a’ 7)) - a” (7(t)) =0 (27

extends Onsager and Machlup’s result® to the case of a
one-dimensional nonlinear diffusion process.
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Recoupling coefficients of the symmetric group involving

outer plethysms

John J. Sullivan

Physics Department, University of New Orleans, New Orleans, Louisiana 70122

In a series of papers we have examined the properties of certain double coset matrix elements (DCME) in
the representations of the symmetric group Sy that act as recoupling coefficients for outer products carried
out via alternate subgroup sequences. In this paper we examine these same properties using symmetrized
outer products in Sy, which are also known as outer plethysms. The notions of double coset
representative, symbol, and matrix element are extended to this case using the theory of semidirect
products and little groups. The recoupling coefficients between bases symmetry adapted with respect to the
usual outer product and the outer plethysm are examined in detail. Because of the Weyl-Schur
construction of irreducible tensors, the recoupling theory of Sy is central to a unified recoupling theory of

the general linear group and its subgroups.

1. INTRODUCTION

In a series of articles’ we have been attempting to
develop a theory of recoupling coefficients (Racah
algebra) applicable to the integral representations of
the general linear group of arbitrary dimension Gl{d),
and by direct extension to its unitary U(d) and unitary
unimodular SU(d) subgroups. The distinguishing feature
of this development is that the role of the symmetric
group S, in designating the coupling scheme is always
explicitly displayed. Extension of this development to
the basis labeling scheme used in spectroscopic shell
theory (see the following paper) has required a more
thorough analysis of symmetrized outer products in S,,.
The operation of symmetrizing an outer product is
termed by Littlewood? an outer plethysm and is treated
in some detail in his book and in a book by Wybourne. 3

A general thesgis of our development of the Racah
algebra of Gl(d) is that the underlying vector space of
whatever dimension simply acts as a carrier space of
matrix representations of S,. The nontrivial aspects
of the general recoupling algebra are in one to one
correspondence with the algebraic structure in S,.
Thus our development can be separated into considera-
tion of the recoupling algebra of S, as in this paper,
and consideration of the correspondence of this algebra
with the Racah algebra of Gl{d) as in the following
paper.

The theory of recoupling coefficients developed so far
has been based on a double coset (DC) decomposition
® S,-N\SN/® Sy;» (NFN, N;FN ( L meaning a partition of).
The recoupling coefficients have been identified with
double coset matrix elements (DCME) of S, in bases
symmetry adapted to the DC decomposition. Weighted
double coset matrix elements (WDCME) satisfy orthog-~
onality and completeness conditions in S,. Certain of
these WDCME have been identified with the isoscalar
factor of the Racah algebra. In this paper we extend the
DC development of S, to consider the process of outer
plethysm applicable when two or more of the parts N
or Nj become equal. Designation of the DC and the
DCME requires the use of semidirect group products
and the representation theory of little groups.? The
designation, let along the evaluation of a general DCME
in this scheme is involved. Fortunately it is the simpler
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DCME (not to say trivial) that are required for extend-
ing the development to the recoupling coefficients of
shell theory.

In Sec. II we review the general theory of DC de-
composition and the pertinent results as applied to S,,.
Semidirect products and the representation theory of
little groups are reviewed in Sec. III. The extension to
outer plethysm is considered in Sec. IV, This is follow-
ed by some brief comments on phase conventions in the
final section,

1I. NOTATION AND RESUME OF PREVIOUS RESULTS

Any group G can be expressed as a sum of disjoint
double cosets H\G/K with respect to any subgroups H
and K (perhaps identical),

G=J HgK, ¢ a double coset representative (DCR).
q

A matrix representation of G can be considered that
is symmetry adapted to (different or identical) sub-
group sequences on the left (lower) and the right (upper)
indices

K—q'Hqn K=9L,

G

H—~HMqKq'=L,.
Note this is a representation in the normal sense only
for H=K. The intertwining subgroups ¢L and L, are
isomorphic under conjugation by ¢. Because ¢?L
=L,q, Schur’s lemma requires the intertwining matrix
assigned to the DCR to have double coset matrix ele-
ments of the form

Y q A A,
=06Mjirb L,

7 ’
ihihjm ?\j’hj’l’n A ixj

, @.1)

1
where x, (A, A, A, label the irreps of the correspond-
ing groups, G, H, K, and “L=L_respectively. The
(assumed) unitarity of the matrix representation re-
quires unitarity of the DCME, the pair (A,},) designat-
ing the rows and columns with X and Py fixed.

The group completeness condition can be regarded
as establishing an isometry between inducing from a
subgroup H by action of the coset factors G/H, and in-
ducing by action of matrix basis projectors (\}mi1)
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symmetry adapted to the subgroup. The isometry is a
specification of the duality between inducing and re-
stricting as expressed in Frobenius’ reciprocity rela-
tion., With matrix basis projectors defined as

A gt
g=0 |nm)‘
n m

()\Imn)s:—%% ?

the orthogonality relations become
A [’ 0| mn) =6M'5 L O [0’ n)

and the completeness relation becomes

When the index n— n)\jml is symmetry adapted to a
subgroup H, the orthogonality and completeness rela-
tions factor requiring for coset representatives,

0 € G/H,;

A’ 1 A o)
I N |2l
) I =8B TRT
o ’ 7’
™y m nhjm, m n)\jmj
and
A o 1A o4
5 1AL e ML
xmn | G} , oo IHI mjmj
m m\jmj m nAjmj

Extension of this factorization to double coset repre-
sentatives K\G/H leads to the unitarity of the WDCME,

LHI K| AL 1l |2
[GI LT T2]

7\)Lj

A 2.2)
A LA
i i

the pair (A, ¢ ;1;) designating the (square) rows and
columns with A, A, fixed. In (2.2) |GI, |H|, {K|, and
I L| denote the order of the groups G, H, K, and L,
respectively and | 2! denotes the dimension of the cor-
responding irreps. It has further been shown 1(c) that
certain specific applications of the unitarity expressed
in (2.2) give well-known dimensional results in the
theory of induced representations in accord with
Frobenius’ reciprocity relation and Mackey’s subgroup
theorem. More exactly, Eq. (2.2) expresses the ele-
ment of the transformation matrix between the two
bases shown to be equivalent by Mackey’s subgroup
theorem.

As applied to the symmetric group with the double
coset decomposition S #®S N\S /SN ®Sy,, the DCR are
in one to one correspondence with double coset symbols

N N N.

1 2

N N -K N, +K
2N 2N1+K 2N2_K

where K takes all integral values such that all entires
are nonnegative and

51N® SzN N SN1 ® SN2 =54, ® SlN2® Sz”1® 32N2
The DCME can be considered real and take the form
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XA, N
122
2A ZA’I 2)\2

where the rows or columns must couple according to
the Littlewood—Richardson rules? for outer products
of the symmetric group. Multiplicity labels may be
required to uniquely specify the outer product coupling.
Such labels although supressed in the notion used here
are implied in the process of carrying out the Little-
wood—Richardson rules.

Extension of the above procedure to subgroups signify-
ing multiproducts S,/® Sy requires the additional
specification of a series of binary couplings in arbitrary
order. This complication can be avoided when the sub-
groups are over equivalent sets as S,,/(S.}¥. An inter-
mediate subgroup can be introduced, S,,/S,® (S ¥,
where @ indicates a semidirect product, and the theory
of little groups can be used to specify the coupling chain,
This is the subgroup sequence used in shell theory, and
the principal goal of this paper is to extend our double
coset considerations to such subgroups.

In the above and what follows we use the notation:
® a direct product over the indicated terms,
® a semidirect product,

® an outer plethysm (symmetrized outer product),
Greek letters A, a, u label irreps of the various
groups.

1. TENSOR PRODUCTS AND THE THEORY OF
LITTLE GROUPS

Let GY be the Nth rank direct product group with
elements (g, g,,...,gy)={g} which is a normal sub-
group of the semidirect product group S, ® G¥ with ele-
ments (v, {g}). The group combination law is

n’{g}')(wl’{g/}):(”ﬂl’ {g}{ngI}): 3.1)

where {ng’} indicates the N-tuple {g’} reordered in ac-
cordance with the permutation 7. Denoting the ir-
reducible representatlons of G by a,, the irreps of G¥
are designated by sets {Ot il where V indicates the fre-
quency of the irrep ¢, in the direct product More ex-
actly {a } labels an orblt of G¥, different irreps cor-
responding to different ordermgs of the a,, but our
notation need not make this distinction explicit. The
irrep {oz ’} has invariance (stability or little) group

2 Sy; ® (G) ) with 1rreps designated by products of
palred labels ® (A a, with A, ~N,. In accordance with
the theory of little groups these same labels suffice

to specify the irreps of the normalizer group which we
symbolize by the set {\,@,}. The induction relations
are:

{a¥ilte Sy, 0 G) =0 1|0, (3.2)
for any irrep in the orbit of {a,{}, and
® (el 1S, 8 (G)¥ ={\a,}, anirrep. (3.3)

The {rreps {of¥, ® (r,a,), and {1,a,} have dimensions
®|01I el Iai”i,and®( )IAHaJ”:respec-
tlvely [(N ) is the multinomial ﬂ/' /®N.1.] As noted in

John J. Sullivan 1675



Sec. 2 the induction process can be considered in its
specifically reduced form using matrix basis projectors.
For simplicity we consider induction from the irrep
{&"} so that the little group is the normalizer.

The matrix basis projectors for the irrep {)\a} of
Sy ® (G)¥ can be written as

I lal A B
()\,ml)@{(alm.l.) :'—— — 7 ®
L N |Gl alzy
m 1 m; 1
X (m,{7g}). (3.4)

By considering the action of an element (7', {2’}) on

the projector one verifies that a carrier space of

Sy ® (G)Y is specified by the fixed set {/,} and index
[ with m varying over |Al values and the set {m,}
varying over |oi¥ value. By the above little group
theory it is also an irreducible space. The |l
possible values of the index [ specify the multiplicity
in the induction {a¥} + S, (G)¥ =3 Ixl (o).

This basic construction of tensor product repre-
sentation classified w.r.t. S, is used in several
different schemes, The Schur—Weyl construction of
irreducible tensor spaces takes G to be the general
linear group in » dimensions Gl{(z) or one of its
subgroups and considers the restriction to the diag-
onal elements (g,,8,,-..,9y) ~ (g,9,-..,8) and thus
labels the spaces w.r.t. the subgroup link

Sy @,J (G)¥ — (G)¥

G

Sy &G

When « is the defining irrep of Gl{n), the restric-
tion to S, ® G yields the basic Schur—Weyl scheme.

If « is a tensor irrep of Gl(n), the restriction to
S, G yields the outer plethysm (& ® A) evaluated in G.

For G=5  the subgroup link may be extended to

S Sy® ) — (S ¥

nN

|

Sn ® (SN)” SN 2 Sn - Sn

The restriction of {xca} to 5, ® S is termed by Little-
wood an inner plethysm because it is the xth sym-
metrized power of the irrep o evaluated in S,. The
induction of {Aw} to S,y is termed by Littlewood an outer
plethysm hecause it is the Ath symmetrized power of the
irrep @ evaluated in S ,. Again using the isometry
between induction and projection, the matrix basis
projector that realizes the decomposition of the outer
plethysm can be written as

(A

MLY[([mD) @ (e [m, 1)} ], (3.5)

If the outer plethysm decomposes as {/\oz} =YF,0)
then only f, different values of L project mdependent
elements in the algebra of S ;. By Frobenius’ reci-
procity relation, if the basis label L is symmetry
adapted to the subgroup S, ® (S )V, then the |A} different
projectors for varying L are differentiated into f, and
(1A - f,) projectors which when acting on the space

{ &l give f, independent spaces or the null result
respectively. Because outer plethysms are important

to the labeling used in spectroscopic shell theory we
examine the DC decompositions pertinent to these
subgroups in the next section,

1IV. OUTER PLETHYSM AND DOUBLE COSETS
A. Semidirect products and DC symbols

For direct product subgroups S S, = Sy, the DC
y

TABLE 1. Examples of designating double cosets in various subgroup decompositions.
DC symbol characterized

DC composition

by (N-tuple or, array)

Intersection subgroup

(2) Spyo18 S\Say /Sy w (S, (1,0)

Sy-17 Sy

(b} Spy-18 S\Say/Sa s (SN (1, 0¥1) Syt s (S)¥!
(@) Sy % (SE\Sy/Sy & (Sy)? W=k k) 0=k<N/2 So s (S S
N/2M k=N/2 55 s (Sy !
(@ Sy 5 (S \Spp/Sy 15 (S¥ (2, 1¥2F 0F) 0= h=N/2 Sy 518, s (S)RP 2 S,
{e) S5 ® (53)3\ So/S58(S,)° (a) 300 (b) 300 (¢} 210 (a) Sy s (Sp)°
030 021 021 (h) Sy.18y & (5,0}
003 012 102 (c) Cy s (8
(d) 210 (e) 111 () s, s (5, )
012 111 le) (
111 111
0 8 & (S9\84,/S; 15 (5,) (2) 300 (b) 300 (¢) 300 (1) Sy s (85)°
030 030 120 h) S, s [9g 18,
003 102 012 () S3.08,°8, s (5,)°
111 012 012
(d) 300 (e) 210 (f) 210 (d) S50 S, & (S,
021 210 201 (e) S, s 1S, s (S)F
012 012 022 (DS, s (5,21
111 012 0Ll (g) Cy= (5,)°
(&) 210 M) 201 () 111 g‘)) I :2 s (5,
021 021 111 oA
102 111 111
111 111 111

Sy indicates the symmetric group on N items; Cy indicates the cyclic group on N items,
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TABLE II. Evaluation of transpose DCME for S, ® (S5,)°\8,/S, @ (Sy)%.

(a) Character tables Sy @ {Sp)? S,® Sy
(13) (24)
irrep\class (1) (12) (30 | (14) @3)f  2(2,1)  2(4) (14 ja2) o a3 esl jas eaf
(2]®[2] 1 1 1 1 T 1
221® [21 1 1 1 -1 5 1 ! 1
2]®[1%] 1 1 -1 1 —l— -1 -1
[121®N?] 1 1 -1 -1 1/ j ! 1 .
-1 1 -
[2)19)] 2 -2 0 0 o<'iA } _1 _1 L
(b} Branching diagrams DCR ¢=(23)
{2-}]>[2]o[21\85/[2&[2]/{;2]]
[14]/[1%, [of—""—[1’]& R Y
_——[21® 1% SA’ AS 2le ] ———, 2
{; ﬂ]\[muzn As? SA><5(2)(12)}<5' b
T(1*l® 12 AA" AA 12 [12 ’
(c) DCME for bipartition irreps
(122 2lo2l e (2] 3 V3/2
[2]@ (2] SS = .
| (12w 2] Y3/2 -4
(13, 11 2le 12l [(@)a?] 010
Rlodl 0 As~SsA 0 |=[100
SA'~AS 0 0
ann {54 o 0l Neon

In Tables II and III the irreps {xa} of Sy & (Sy)¥ are simply designated as [0 1@ [Al. The outer plethysm is then given by the com-

patability relations with S, .

are designated by DC symhols which are simply a
rectangular array of nonnegative integers V; with
2 ;=N,and 3. ;N =, N. The intertwining subgroup
is 1somorph1c to the dlrect product %S,y;- The DC
symbols for (S,)¥"S _./(S,)¥ with ' N’ =nN are simply
N’ by N arrays of positive integers ;n, different order-
ings corresponding to different DC. The effect of intro
ducing the normalizers as subgroups S,, © (S,.)""'S_,/
S,®(S,)¥ is to coalesce all arrays {inj} related to each
other by permutations of the rows and columns into a
single DC. That is the DC symbol can be considered to
be an ordered N’ by N array of nonnegative integers
gy wWith 30w, =wn and ¥, ,n, =»n". The intertwining sub-
group is isomorphic to C» [3 S,nJ where C is the per-
mutation subgroup C =S, 2 S, that leaves the array
{ nt ;r invariant. A particularly simple example is the de-
composxtlon S$q22S \Snv,/'S ® (S )¥ with the DC symbhols
Skw,, 0<k<n. The

given by ordered part1t1ons of ,n=
DC symbol is thus equivalent to the specification of a
set of n +1 weights {w The intertwining subgroup is
isomorphic to 2 [S,, ® [Sn_k® S,[“*]. Table I gives sev-
eral examples of DC decomposmons using semidirect
products. The order of the various subgroups in Table
I can be used to check the normalization of Eq. (2.2)

with A =2° the identity irrep.

B. Outer plethysms and DCME

The DCME have irrep labels corresponding to their
respective groups. In particular the irreps of semi-
direct product groups are labeled in the manner dis-
cussed above. The orthogonality relations with the
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group order, irrep labels, and dimensions correspond-
ingly modified are directly applicable. The DC are real
and those related by association w.r.t. induction from
the alternating group are equal up to a phase. Although
semidirect products substantially reduce the number of
DC to be considered, one muast be careful to correctly
label equivalent irreps of the isomorphic intertwining
subgroups.

For example in the DC decomposition S 9 S Sow
S, ® (S )¥ the equivalent intertwining subgroups on the
1eft and the r1ght are

“2]® [Sw, S (S,)"%

N 4.1

where {iw,} N and {kw,}~,n. The elements of S, on both
sides are identical and labeling the equivalent irreps of
the intersection subgroup requires the use of the
plethysm product rule (Ref. 3, p. 52)

@ [S wr ® n-k

=8 [S,,®[S,_,®S

nek

2 ., A (B> (1) =U“s o M), 4.2)
Loy

where g, ,, is the inner product multiplicity in the sym -
metric group,

Fortunately the DCME required by shell theory do
not require such attention to detail. Two DCME are of
particular interest for coupling within equivalent shells,
One is with all irreps of S, being the one-dimensional
totally symmetric irrep (n)=(2j), A~ N being limited to
parts (length of rows) no greater than two or four for
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TABLE III. Evaluation of transpose DCME for S, ® (8)\S;/ S, @ ()%

(a) Character tables Sy @ (530
irrep\class 1(1%) 6(2, 19) 4(3,1%) 9(22, 12) 12(3,2,1)  4(3%) 6(2%) 18(4,2) 12(6)
(31® (2] 1 1 1 1 1 1 1 1 1
[3]®(2%] 1 1 1 1 1 L -1 -1 -1
{(?*1®{2] 1 -1 1 1 -1 1 1 -1 1
(131©12) 1 1 1 1 -1 1 -1 -1 1
[2,11€{2] 4 0 1 0 0 -2 2 0 -1
[2,1:511%) 4 0 1 0 0 -2 -2 0 1
[(3)(13)] 2 0 2 -2 0 2 0 0 0
[, 1)3)] 4 2 -2 0 -1 1 0 0 0
[(2, 1)(1%)] 4 -2 -2 0 1 1 ] 0 0

5, ®(S,)?

(15 12,19 122,19 2(2%) 2(4,2)

(21® (2] 1 1 1 1 1
[2)®[12) 1 1 1 -1 ~1
[12]& (2] 1 -1 1 1 ~1
[12]©® (1?) 1 -1 1 -1 1
[(2)(1%1 2 0 -2 0 0

(b) Branching diagram (arrows indicate ascent in symmetry and help distinguish irreps of different groups).

1

{31 0 (2]

|

12,23
(2, ﬂm//[; 8 2

512,19 2
»
5.5 123
/ 13,2,1]
018 08— 216 017 (412 1 ad) [ 3,1i1 n% e 2l————0% 8 12}
11N
N
13 1%
/
/
/s y
are e 1% 8 Y3, nady
T 121%////
[_l’](i[".]
1)
£
{c) DCME for bipartition irreps
[[4,21 [2, 1]@[2]] [[4.2] [z, 1)(3)]] [[32] {2, 1]@[121]
Lokl ekl 7T e, nel elent §7 Lk den  w@a
:_[[32] [2,1]@'[12]] (5, 1] Bzl (e, 1)
2,11® 1% [1*l@?] Bloh? [2]® 2]
{2, )®)]
l4, 2] 2,11e02] {2, 1)3)]
N GUEN 1B BloR 210001 | e ) ,
= - | 81@ 11 T (23]
@2 -1 2, 11€ (12] 2l [(2, 1)(3))
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TABLE III. {(Cont.)

4, 2) Bl (2,110 -3

. [(2,1)(3)] 91/2

2,116 (2] [21® (2] =|®

{tz, (3N @an1/z
1

g/

—t
9

40y1/2
@

4
3

9
)

The full 9 by 9 matrix representation of the tranpose DCR in the irrep [4,2] is

TOW OT 3lo®iz] [2,11@(2] lt2, 1}(3)] l{2, 11(3)] {2, 13} f2,11®1(2] F L ] {2,119 (2]
column label { [21®[2] (2i®{2] 21®[2] [2]® [1%] ((2)(1%)] (23] 10 (1212 [2]
-3 (%%)1/2 /e 0 0 0 0 0 0
2 —4 0 0
@Y 2 5 0 0 0 0
e -4 3 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 -1 0 (ARE 0 0
0 0 0 0 0 -1 0 e 0
0 0 0 0 &7 0 +3 0 0
0 0 0 0 0 /e 0 +3 0
3 0 0 0 ] 0 0 0 1
1 ji J
(d) Recoupling coefficient matrix of SU(2) for | V¥ i %
Zj % 2j2 11
row or i Ja [% %] {% %] [% %] [% é] [é %] [% %] [é é] {_) 5 ]
column label Lh 7]'2] 11 11 11 11 01 10 0 1 00
-1 Gpire - Gy/e - (Fpr/e 0 0 0 0 0
(é%)l/z % (381,)1/2 (88‘1)1/2 0 0 0 0 0
— @ (/e z -} 0 0 0 0 0
- Gyt e -2 z 0 0 0 0 0
0 0 0 0 -3 0 @1/ 0 0
0 0 0 0 0 -3 0 e 0
0 0 0 0 &) 0 i 0 0
0 0 0 0 0 @12 0 3 0
0 0 0 0 0 0 0 0 1
the atomic or nuclear cases, A being limited to bi-~ A aoy
partitions [jN +J, jN-J], and /A being limited to the ‘
totally symmetric irreps [jN +M] and [jN —M]. The A ao {4.4)
DCME then have the form
2A LECIN
[jN+J, jN=J] [2j]®[A] and are considered in Eq. (5.5) and Table II of the
. . following paper. In either case the inner and plethysm
N +M - .3 b )
(s ] ® ([2] kle [ka 4.3) product rules are trivial and these DCME are not direct-
[iN - M] ® (k}®[w,]) ly complicated by the nuances discussed in the pre-

Such DCME are considered in Eq. (5.3) and in Table I
(in their WDCME form) of the following paper. A sec-
ond case of use in shell theory has ;n=n,N, ,n=n,N
and w,=,N, w,=,N. These DCME have the form
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ceding paragraph.

The orthogonality relations allow the evaluation of
the DCME up to a sign in the case of only two DC [as
in (a), (b), and (c) for N <4 of Table I]. As an example
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we consider N=2, and 3 for case {(c) of Table I. There
are only two DC, one DC representative being the
identity element with unit diagonal matrix representa-
tion in both cases. The other DC representative may
be taken as a transpose with a self transpose matrix
representation. The DCME for A a bipartition rep-
resentation are evaluated in Tables II (N=2) and IiI
(N=3). One must first establish the appropriate labels
for nonvanishing DCME. Character tables and com-
patability relations are given in parts (a), and (b) of
these tables. Any closed loop completing the subgroup
linkage starting from a given irrep A (of S, or Sy)
establishes the labels of a (possibly) nonvanishing
DCME. The DCME evaluated via the orthogonality
relations are given in part (c) of these tables, Orthog-
onality of the matrices is obvious. The interested
reader is urged to check the orthogonality relations in-
volving the WDCME. The DCME for irrep [3,1] in
Table II(c) exemplifies some of the care that must be
exercised in considering the isomorphism between the
intertwining groups. Conjugation by the transpose ¢
=(23) interchanges the irreps AS and SA of S,® S, and
results in the permutation matrix listed.

Because of the identification of DCME of S, and re-
coupling coefficients of Gl(n), the values of DCME with
bipartition irreps A can be checked with corresponding
recoupling coefficients of SU(2). For example, the 9 by
9 matrix representing the transpose DCR in the irrep
[4,2] will have elements labeled in SU(2) by the angular
momentum recoupling coefficients of the form

where |, i, j,» j, have values 3 or 3 and j,, ,j, have
values 1 or 0. Using well established procedures for
SU(2), the 9 by 9 recoupling matrix evaluates as shown
in Table ITI(d). A symmetrizing operation on the third
and fourth rows and columns corresponding to con-
jugation by the matrix

1 ,/'/ \/2_ 1 /‘/—2_
—1// 2 1/‘/\/’2_

must be performed to obtain the states labeled by
[2,1)3)], and [2]®[2] or [2]®[12]. This leads to the
matrix of Table III{c) up to a sign. The phase has not
been adjusted because we wish to emphasize that while
certain relative phases are fixed by the group algebra
(the characteristics of the two matrices are the same),
a consistent phase convention requires consideration of
both the groups S, and Gl{n).

The identification of DCME in S, with recoupling co-
efficients in SU(x) relates different DCME in S, via their
equivalence in SU(n). E.g.

(4,2] (3] [2,1]} 1{3,1] (3] [1]
(3] [2] [l |=1{ [3] [2] [1]|=-3
(2,11 {1 [2*] (11 {1] {o]
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1] {1} fo]
(4,2] [2,1] [2,1]
=-1(2,1] [2] 1]
(2,1] [1] [17]

as in the matrix of Table Ill(c). It is also easy to verify
the trace and determinant of the matrices of Table II
and [II from the character tables of S, .

(4.5)

V.PLETHYSM AND PHASE CONVENTIONS

The operation of plethysm performs a symmetriza-
tion over all DCME related to each other by permuta-
tions of their rows and columns. One might wonder if
these related DCME are equivalent up to a phase, and
if so, what is the phase convention. In earlier work we
had noted that the phase convention advanced by Baird
and Biedenharn® for Gl(d) seemed plausible. That con-
vention established a phase factor for each irrep

4

Pd(A)E%KEj (Fa =7x), where x=(2, 2x,...,%0).
This reduces to the standard convention for SU(2), and
the phase factor P,(x) - P,(x,) - P,(x,) appropriate to a
permutation in the order of coupling is independent of
the dimension d and hence appropriate to coupling in
the symmetric group. To be in accord with the plethysm
operation one should require P(A) — 2P()\,) be even if
AS ), @[2] and be odd if A€ A, ® [12]. However some
representations of the symmetric group are both even
and odd, the simplest example of which is [3,2,1]
=[2,1]=[2] and [3,2,1]< [2,1]»[1%], whereas the above
convention would indicate an even phase. The role
played by the plethysm operation (¢ @A) in the sym-
metrization process, especially for | Al > 1, indicates
a simple phase convention is not entirely adequate.
Even in cases in which the DCME can be evaluated using
the orthogonality conditions the value is determined
only up to a sign. Some relative phases are fixed by the
orthogonality requirements but overall phases are not.
Moreover from the point of view of (n ~ j) coefficients
in the general linear group one should equally consider
permutations involving the first row and column of the
DCME. It seems the entire question of phase can only
be assessed when the development of coupling theory is
more compliete.
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Recoupling coefficients for tensor representations of the general linear group Gl(n) are identified with
analogous quantities in representations of the symmetric group Sy. Two basis labeling schemes in Gl(n)
are considered: (a) uses weights and outer product labels from Sy, and (b) uses outer plethysms in Sy
and labels with respect to some elementary subgroup, usually SU(2). Scheme (a) corresponds to a
generalized Gel’fand-Tsetlin basis and is the one usually adopted in elementary particle theories. Scheme
(b) corresponds to the basis usually adopted in nuclear and atomic shell theory. The transformation
between the two equivalent bases is identified with certain weighted double coset matrix elements
(WDCME) of Sy. Racah factors are generalized isoscalar factors in scheme (a) and have previously been
identified with certain WDCME in that basis. In scheme (b) Racah factors determine the coefficients of
fractional parentage (CFP) and are here identified with certain double coset matrix elements (DCME) of
Sy. Identification of these recoupling coefficients with the analogous quantities in Sy exposes new
symmetries and orthogonality properties of the coefficients which follow from the representation theory of
Sy. Some particular examples are verified by coefficients evaluated using well established techniques for

SU(2).

I. INTRODUCTION

Racah recoupling coefficients of the unitary group
U{n) are used extensively in elementary particle physics
and in atomic and nuclear shell theory. Nuclear
theorists for the most part have been the initiators of
introducing results for the symmetric group Sy to sim-
plify their shell calculations.! These applications have
been mostly ad hoc and lack an explicit and/or general
specification of the coupling in Sy. In our previous
development? of the theory of coupling coefficients we
have employed tensors of the general linear group Gl{z)
explicitly labeled with respect to (w.r.t.) both S, and
Gl(n). The basis labeling scheme has utilized the gen-
eralized branching theorem which is equivalent to a gen-
eralized Yamanouchi® scheme in S, and a generalized
Gel’fand—Tsetlin! scheme in Gl(z). Although this is
the scheme frequently used in elementary particle
theories, it is not the preferred basis for spectroscopic
shell theory. In this paper we bridge this gap by giving
a more thorough analysis of the basis labeling schemes
in Gl{z) and the relations between them. Two particular
coefficients of importance to shell theory, Racah fac-
tors and coefficients of fractional parentage (CFP),
are expressed in terms of double coset matrix ele-
ments (DCME) of Sy. A central result of our previous
work and this paper is the identification of recoupling
coefficients in Gl(r) with matrix elements in S,. Aside
from leading to the direct evaluation of certain of these
coefficients, such identification allows the direct appli-
cation of results that follow from the representation
theory of S,. Two such results are of prime impor-
tance: (1) Matrix representations of S, can be assumed
orthogonal and any transformation between equivalent
representations is also orthogonal. Hence, the matrix
elements are real, (2) The completeness and group
orthogonality relations of S, apply to the recoupling co-
efficients. In considering the recoupling process primi-
tive tensors of Gl{(n) simply provide a carrier space for
the realization of irreps of S, and the recoupling co-
efficients have significance independent of the dimension
n.
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Because the basic orthogonality we utilize derives
from the theory of Sy, we will in this paper generally
refer to (integral representations of) the noncompact
group Gl(z) although the specific applications we have
in mind are in the compact unitary and unitary uni-
modular subgroups U(z) and SU(2). The preceding paper
gives a resume of the notation and pertinent results
developed so far w.r.t. Sy. Section II analyzes the
basis labeling problem in Gl(z). Section III considers
the process of tensor coupling in GI(z) and the utility of
Racah’s factorization lemma.® Coefficients of fractional
parentage are related to Racah factors in Sec. IV. Sec-
tion V identifies the transformation matrix between
equivalent bases labeled as in elementary particle
theory and as in shell theory with a weighted double
coset matrix element (WDCME) in S,. The Racah factor
of shell theory is identified with a DCME in Sy,

I1. BASIS LABELS OF A/'th RANK TENSORS OF
Gl (n)

The Schur—Weyl construction of Nth rank tensors of
an n-dimensional defining vector space provides an ir-
rep label A, a partition of N into no more than n parts
(A -N), that labels the irrep with respect to both S,
and Gl(#). The basis with respect to Gl(z) can be
labeled by the weight W =1{w,}, 1<% <n, an Nth rank
ordered n-tuple (WH N), the components of which give
the ranks of the totally symmetric subtensors in each
of the n dimensions from which the weight is built up.
The remaining basis labels w.r.t. Gl(z) can be indexed
exactly as in the group S,. I.e., let a primitive weight
state be designated by the simple Nth rank product

[Wy=o|mw,), (2.1)

which is by construction the basis of the identity irrep
of ®S, . All independent (and mutually orthogonal)
states with the same weight W are realized by action of
the coset representatives S,/@ka on the primitive
weight state. By construction they are a basis for a
representation of Sy, the representation induced by the
identitity irrep of ®S,,. As shown in Sec. II of the pre-
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vious paper there is an isometry between inducing by
action of the coset representatives and inducing by
action of matrix basis projectors the second index of
which is symmetry adapted to the subgroup ®ka. The
second index of the projector acts as an intermediate
coupling specification of the weight and hence as a
label w, r, t. Gl(z),
m
Mmm)[Wye{ N 2w\
m’ (W)

(2.2)

If one considers the basic defining space separated into
two defining spaces of dimensions »; and ny =n —n, such
that the primitive weight state factors as a product of
two weights |W)={W,) |W,) of ranks N, and N,, then the
labels in Sy are symmetry adapted to the subgroup
Sy ®SN2. Thus in terms of the outer product in S the
following labeling w.r.t. Gl(z)"/Gl(n)"1 ©Gl(1,)"? cor-
responds to the general branching theorem

n

N A ony g
Ay Ag
mi(Wy) mi(W,)

with X F Ny, N B Ny, W=W, + W,, (2.3)

where W, is an Ny rank ny-tuple and W, is an N, rank n,-
tuple. The labeling scheme is a generalization of the
Gel’fand— Tsetlin basis which starts with the dimension
n and sequentially reduces it by one. In the same sense
the analogous labeling scheme w.r.t. SN/SN1 Sy is a
generalization of the Yamanouchi basis, The third rank
tensors of G1(3) for example have 3® =27 independent
elements which can be separated w.r.t. S; into a totally
symmetric irrep [3] of dimension ten, a totally anti-
symmetric irrep [1°] of dimension one, and two [corre-
sponding to the two values of m in Eq. (2.2)] eight-
dimensional irreps [2,1]. The weights correspond to
3-tuples (wy,wy,w,) with wy+w,; +wy=3. The weight
specification is sufficient to label the bases for the
irreps [3] and [1°], and six of the basis members in the
[2,1] irrep with weights of the type (2,1,0). In the ir-
reps [2,1] two members of the basis have weights (1%)
and are differentiated by the two possible values of m’
in Eq. (2.2).

Similarly the inner product in Sy provides a labeling
w.r. t. Gl 12,)¥ /G102 )Y ©G1i,)Y as

Hl

N A Ry
" L (2.4)

m{(W;) mi(W,)

with p N, MNe(p)x(@), vE N, W=W,W,, where W, is
an N rank ny-tuple and W, is an N rank n,-tuple. The
present paper does not exploit this labeling scheme,

In shell theory applications one forms symmetrized
species out of a basic defining representation that can
itself be considered as a symmetrized tensor of a more
fundamental defining space. For example in atomic
shell theory one has the following decompositions for
equivalent p or d electrons:
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(bR ~'D,s,%P, (@F—1G,'D,’s,F, P,
([))3_' 2D,2P, 4S, (d)3"’2H,2G,2F7 22D’2P’4F,4P=

The symmetrization of a tensor basis is termed an
outer plethysm by Littlewood due to its action as a
symmetrized outer product in the symmetric group.
Corresponding to the above third rank tensors one has
the plethysms:

(2] © [3]=[6] +[4,2] +[2°],

(2] ® [2,1]=[5,1]+[4,2] +[3,2,1],

(2] ® [1%]=[32] +[4, 1?],

(4] @ [3]=[12] +[10,2] +[9, 3] +[8, 4] +[67],

[4] @ [2,1]=[11,1] +[10,2] +[9, 3] +2(8, 4] + {7, 5],
[4] ® [13]=[9, 3] +[7, 5],

where in the decomposition of the latter three plethysms
we have listed only the bipartition irreps. Nuclear and
atomic shell theories decompose plethysms w. r.t.
SU(2), i.e., the subgroup sequence involved is Syin
®SU(2)MY/S, 3(S,; 8SU(2)*’]". Symmetrization within a
defining SU(2) space requires the plethysm be decom-
posed only up to bipartition representations. Further-
more because of the Pauli principle the symmetrizing
irreps can have parts no larger than four for nuclear
isospin shell theory, and two for atomic shell theory.
Thus [(2)] @ [(3)] and [(4)]®[(3)] have no physical reali-
zation in atomic shell theory, but they do occur in
nuclear shell theory, The bipartitions contained in the
above plethysms [2, 1] and [1?] correspond to the doublet
and quartet decompostions in atomic shell theory,

Shell theory requires the decomposition of plethysms
of totally symmetric irreps [2j] of SU(2). The corre-
sponding tensor labels are

1
/N A2 +1
\ J

M

where the angular momentum J indicates the bipartition
[N +J,iN = J] with basis [jN + M|S[jN = M], ~J =M
<-J, In the general case J and M may be considered as
simply labels w.r.t. any defining subgroup SU(’). One
of the principal results of this paper is to identify the
unitary transformation between the basis sets

ni / m \
N A 2j+1) and (N » 2j+1
m’ (W) J
VoM
with a WDCME in the symmetric group. The defining
irrep of G1(2j +1) is the identity (in §) tensor irrep
[27] of SU(2). The 2j +1 dimensions expressed in terms
of the two-dimensional weights (a, 8) of SU(2) are
(@"*, B*) with 0 </ <2j. The weights of the Nth rank
tensor basis in G1(2j +1) are given by 2j +1 tuples W
={w,} such that Y w, =N and } kw,=jN - M. The desired
unitary transformation therefore has rows and columns
designated by m’(W) and J with A, M, and j acting as
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parameters, For example, the 6 X6 matrix for j=1,

x ={2] is unit diagonal for M #0 and 2%2 for M =0 with
W=(0,2,0), (1,0,1), and J=2,0, The 10x10 matrix
for j=1, A=[3] is 2X2 in the blocks M1, W=(2,0,1),
(1,2,0); and M =0, W=1(0,3,0), (13) with J=3,1. The 8
X 8 matrix for j=1, A=[2, 1] blocks into two 1X1 for M
=+2, two 2X2 for M==+1, and a 2X2 for M =0 that
further decomposes for reasons discussed in the final
section. The nontrivial matrices are displayed in Table
I of Sec. V. Note that additional multiplicity labels may
be necessary to completely specify the basis in either
scheme. Such is the case for the irrep [8, 4] in the de-
composition of {4]©[2, 1] for which a seniority label®
can be used to differentiate the multiplicity, The prob-
lemis of multiplicity labels is further discussed in the
Appendix to Ref, 2(a). However the multiplicity is re-
solved, such labels can simply be appended to the sym-
bols discussed here.

11l. TENSOR COUPLING IN Sy AND Gl(n)

Tensor coupling can be accomplished by using the
Clebsch—Gordan coefficients of the group and/or using
matrix basis projectors in S,. The result of projecting
on a tensor product is the tensor sum

" k
Aoy
Ok, ym)o(N; A ny=2 (N x n , (3.1)
u M| M,
M, M i/,
where
A
M| M;

I
is the Clebsch—Gordan coefficient in SU(z). Equation
(3.1) is readily verified by multiplying both sides by
A LN
M| M'[,

and summing on M; to obtain the identity

i

. Aj LA
MRyX;m)o22(N; A n (M,- M'),,
M,
A0t

=(

Ryaym N N m
M’
k

=5"{N 2 n/ (3.2)

M’

Whenever the basis label M has explicit subgroup signi-
ficance, a partial Clebsch—Gordan coupling can be car-
ried out w.r.t, this subgroup. This leads to a direct
(Racah) factorization of the coupling coefficients which
we proceed to demonstrate for the two labeling schemes
considered here. For a basis labeled w.r.t. the gen-
eral branching scheme we may define an isoscalar fac-
for as
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2 Ny Xy o) [Ny Ay m+an
‘Mj
' 1A 2 e 2
1My oMy 1My oM,
Ay 42 DAp g |2
X
My My | M\ My M
n o
1 2
niy My
A A
= 0+
2N Py e
A
A g
MM
A A X
X . (3.3)

LY. T SR, PRI P

The isoscalar factor does not depend on the subgroup
basis indices ;M as can be ascertained by considering
the action of raising or lowering operators of SU{in}

® SU{yn) on both sides of Eq. (3.3). Projecting in S and
bringing the coupling coefficients of the subgroup to the
right side via the unitarity conditions gives the usual
factored form

A X X
A A 1A N 1Ay 2Ny
MM

My oMy My M,

1M+ n

A M Ay

L2 P PR Y91 1Re Ay
A

X
M

L LY PN Y SEEY Y

(3.4)

My (M, oM | oMy WM, [

i 2n
The isoscalar factor is unitary on the labels (A, ,A;) and
has been identified?'® with the WDCME on the symmetric
group as

M _(l)\liN!Nl-! mg)“z AN (3.5)
Al TANTL I NG Ny )

showing the isoscalar factor may be considered real and
independent of the dimension n.

In the basis using the plethysm operation similar ar-
guments lead to the factorization

A A,
Mo XN x| [T O
g, J, =
I J|J Jy| \M| M, M, (3.6)
M| M, M, " n

n

Here again although symbols J and M normally asso-
ciated with SU(2) are used they may be considered
generically w, r,.t. to any fundamental defining group
SU@’). Since it is the transformation between equi-
valent orthogonal bases, the square bracket is unitary
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on the labels (A,J;). A second principal result of this
paper is to connect the Racah factor

A a

JVJy J
n
to a DCME in the symmetric group., Some examples are
given in Table II of Sec. V. We first demonstrate that
these Racah factors determine the coefficients of frac-
tional parentage of shell theory.

IV. COEFFICIENTS OF FRACTIONAL PARENTAGE
(CFP)

In the LS coupling scheme the CFP factor into two
parts each being a modified Clebsch—Gordan coeffi-
cient in the unitary group of dimension appropriate to
the external (orbital) or the internal (spin-isospin)
space. Using the result of Sec. III these modified
Clebsch—Gordan coefficients are identified as the
Racah factors for this labeling scheme.

For Fermi particles the external and internal spaces
are coupled to form the totally antisymmetric irrep
using the Clebsch~Gordan coefficient in S

POV e

= i ’ (4-1)
moa’ ] 0 [x}

s

N

where A:‘” is a phase such that for subgroup specification
1~ A {11, oA oh1 the product phase

AL 1Ay or
N gy A m Aoy = OO, 2, 00)

(4.2)

is independent of {1, ,n2. This is the only significant ef-
fect of phase on what follows.

The CFP is defined as the scalar product of an anti-
symmetrized state

| N aBLM SMg),

A
= 7 Ale.z*gm
Ixd

1
1™
e ol on g \
A A Ao
X{ N A (N X n' (4.3)
\ a L g S
\ My Mg

and a partially symmetrized state
[N (M) @p@) (BB (1 Lo L)L M £ (1S,S)SM )

A A
- Z; A}mAzm
T ogmm (T I T

ML oMy

tHsoMs
1 (!

X (1N A AR DT
@ L 18 S

1684 J. Math. Phys., Vol. 19, No. 8, August 1978

oIl oM
x (N A 1wy (N oA n'
2@ oL B S
L LL L[S S |s
My oMy | M\ Mg Mg | M, ) (4.4)

In Eq. (4.4) multiplicity labels o, 8 are specifically
exhibited. Expanding the Nth rank tensors of Eq. (4.3)
by Clebsch—Gordan coupling in U(z) as

(i il

2 27 \

N A 1
al )
T
1 \ 911
- N 1y foN A n
110;2; 1 L 20 oL
Mg oM \ My \ oMy
» Y I hY
x| o L o L ialL
My My, } My

and taking the scalar product of Eq. (4.4) on Eq. (4.3)
gives

<i\’v(1)2>t)(101201)(1325)(1L2L)L'AW},(1325)
X S'M G |NXaBLM ;SM g), =oL'Lous
<(1>\2>\)(1012a)(1823)(1L2L)(1525) H)\a RLS)

= 2 o) <—1——2——| ALl M>”2

x|
(LS ALY
IMS 9 g
L'\ L ,L S S S
X
MpyMyp My M| Mg oMs)
A A
1 2)\
X a 4L 2 oL a L
My My My
P UY x
X| B1S 2BsS| B S {4.5)

Mg M| Mg

Use of Eq. (3.6) allows the CFP to be expressed as
)G aa) (BB (L Lo L)(1S,S) }AGBLS>
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Pl Iag\/2 A A by
~(SRL) 7w
L g0l
«| A 2t AT (4.6)
348 48 .S B S

"l
For the atomic case n’ =2, n =2l +1, the last factor
is trivial and writing 2 =,S, etc., we have

{(100) (4L, L)(4S,S) |}ULS>1

:t{[(lz\]+5+1> < ) NILNT( 2s+1)(225+1)]/
(1g+1s+1> ( ) ( 2s+)

><<2%’ - ZS)! (2s +1)]}”2

% S 25 S (4.7)

1@y L 0L | al |,

CFP are usually defined with ,N restricted to unit value.

V. CONNECTION WITH DC OF THE SYMMETRIC
GROUP

A. Basis transformation and WDCME

The unitary transformation between the basis utiliz-
ing the general branching law and that using the opera-
tion of plethysm involves the double coset reduction

(S ©G1(d)!"] ®[Sy ® GL{dy)? \S,y ® GLA)™/

S, @[S, ®Gudr". (5.1)
For the purposes of shell theory we may take d =2, d,
=1=d,, and n=2j. Since the general linear group
simply provides a carrier space for the irreps of the
symmetric group we may restrict our considerations to
the latter group. The DC symbol is the type Eq. (4.1)
of the previous paper

SnN SN @ (Sn)N
Spn vy (5.2)
S ®(S, ®[S,®S:] ©)

2" k

and is designated by the Nth rank »n + 1-tuple {w,}, 0 <k
<n, with} w, =N and Z,u,k:zn. For shell theory appli-
cations the DCME are of the form

[N +d, iN=J] [2i]o[A]
[JN +b1] ®([2] - k] ©[w,])
[iN - M] (k] o[w.])

(5.3)

where the dimensionality of the underlying linear groups
limit the irreps to the totally symmetric single parti-
tions, or the bipartitions as indicated. The equivalent
bases are those generated by Mackey’s subgroup
theorem. The WDCME has been shown to be the unitary
transformation between these bases. The matrix ele-
ments have the form
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( (2J +1)(JN + M) (JN = M)IN1(251)*
(N +J+ DT GN =N I e[w, (25 - £ ] %]

)1/2

[iN +J, N =J] [2/]]  @©[a]
x| [N +M] ®((27- k] ®w,]], (5.4)
| jN = M] o(k]  ©[w,]

where j, M, and A are parameters and the rows and
columns are designated by (J, {w,}). The matrix ele-
ments for J=jN evaluate directly as the weighting fac-
tor. The orthogonality relations can be used to evaluate
any two by two matrix that includes J=jN. As exam-
ples, Table I gives some of the transformations between
the equivalent bases discussed in Sec. II.

1t is to be noted that only the relative phase is deter-
mined by orthogonality and in Table I we have chosen a
convention with positive determinant. Besides the totally
symmetric irrep J=jN, the DCME is also trivial for
N =2, wy=1=w,; (it is the matrix element of the iden-
tity operator) leading to the direct evaluation of the
WDCME in those cases. For M =0 one may use the DC
decomposition S @ (S, 5)2\Sy;4/Sy @ (S,,)¥. This leads to
the additional diagonalization indicated for j=1, A
=[2,1]; =2, x=[3]; and j =2, A=[2,1]. In these cases
an additional factor of two may appear in the radical of
Eq. {5.4) if w,#wy;., such as j=2, M =0, {w,}

=(0,2,0,0,1). A subscript s or a is addended to the
welght to 1ndlcate a symmetric or antisymmetric combi-
nation. Such a subscript is also required for ¥ =0, {wk}
=(1%), to distinguish the basis members in the two-di-
mensional >\=[2, 1] irrep. The dash simply indicates the
matrix element is not easily calculable by the present
considerations., The matrix for j=2, x=[2,1], M=0 is
presented to demonstrate the diagonalization and to em-
phasize that additional multiplicity labeling, such as a
seniority label to distinguish J=2, may be required to
uniquely specify the transformation.

B. Racah factor and DCME

The Racah factor for the shell theory labeling scheme
corresponds to the DC decomposition

2iN 24
[S2v, ©GL2) 1] @[Sy, ©GLE) " \S,;, ©G12) Y/
®[s,; ®G1(2)¥]¥,
for that DC with intertwining subgroup
sy, 015,,0GL2)] " Jels,, ©S,, © GL2)] "],

The DC symbol is of the form of Eq. (5.2) with w,=Ny,
w,y; =N,, The DCME has the form

[N +d, N=J] [2i]]l©oQ)

. . , Al Ay A

[Ny +J4, iNy=d1] [25]]O () |= t 721, (5.5)
. . . J\J

[Ny +J, iNy=J3] [21]© () v

For fixed j, J, Ay, and X, the DCME is orthogonal with
rows and columns indicated by (J;Jy, A). This being the
unitary transformation between the equivalent basis
schemes, the DCME is identified with the Racah factor.
Whenever for fixed J, j, Ay, and 2, the intertwining is
unique, the DCME is trivially £1, Such is always the
case for the DCME with J=3jN or J=3jN - 1. Examina-
tion of the plethysms for N =3 evaluated in Sec. II
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TABLE I. Transformation matrices: WDCME of Eq. (5.4); j, A, ¥ parameters, rows and columns designated by (J, w,).

j=1, a=[2], =0 Jow, (0,2,0) (1,0,1)
2 (2/3)1/2 (1/a)1/2
0 - (1/3)1/? +(2/3)1/2
i=1, a={3l, Ar=1 J o, (2,0,1) (1,2,0)
3 {1/5)1/2 (4/5)172
1 —(4/5)1/2 +(1/5)1/2
i=1, a=I[3], M=0 J ow, (0,3,0) (1,1, 1)
3 (2/5)1/2 (3/5)1/2
1 - (3/5)1/2 (2/5)1/2
j=1, a=1[2,1], M=1 J w, (2,0,1) (1,2, 0)
2 /2 12
1 - 12 1/V2
i=1, a=[2,1], M=0 Jow, (1,1, g (1,1, 1)
2 r 1 0
1 0 1
i=2, a={2], M=2 Jw, (1,0,1,0,0) 0,2,0,0,0)
4 I (3/7)1/2 @/mse
2 — (/1172 (3/7)1/2
j=2, a=[2), a=1 J w, (1,0,0,1,0) {0,1,1,0,0)
4 ( (1/7)172 (6/7)1/2
2 - (6/7)1/? (1/7)1/2
j=2, a=1[2], M=0 J w, (1,0,0,0,1) (0,1,0,1,0) 0,0,2,0,0)
4 (1/35)1/2 (16/35)1/2 (18/35)1/2
2 (/i (/e —(/m)/2
0 ~ (2/5)1/2 (2/5)172 - (1/5)1/2
j=2, x=[1%], M=0 J o, (1,0,0,0,1) 0,1,0,1,0)
3 (1/5)1/2 (4/5)1/2
1 —(4/5)1/2 (1/5)1/2
(1,0,0,2,0) (0,2,0,0,1)
j=2, a=[3], M=0 J o w, (1,0,1,0,1) (0,1,1,1,0  (0,0,3,0,00 (0,2,0,0,1), (1,0,0,2,0),
6 (3/77)1/2 (48/77)1/2 (18/77)1/2 (8/77)1/2 0
4 - - - — 0
2 — - — — 0
0 — — — — 0
3 0 0 0 0 1
(1,0,0,2,0) (1,0,0,2, 0
i=2, a=[2,1], M=0 J w, (0,2,0,0,1), (1,0,1,0,1)g (0,1,1,1,0) (0,2,0,0,1), (1,0,1,0,1), 0,1,1,1,0),
4 — — — 0 0 0
2 - — — 0 0 0
2 —_ — — 0 0 0
5 0 0 0 — - —
3 0 0 0 - — —
1 0 0 0 — - —
— means the entry is not easily evaluated by the techniques described in this paper,
shows all DCME are trivial except for those listed in group S, @[SN1 ® (S,;) ¥1]* may be used. This allows N;
Table II. The DC matrices listed in Table II are two by =1=N, to be considered trivially and introduces some
two except for a three by three matrix for j=2, J=2, simplification in cases of higher rank.

A =[2]. Although the DCME are not directly calculable
by methods discussed in this paper, the orthogonality of
the WDCME does determine the values for j=1, J=1,
X; =[2] and this matrix is given in Table II{(a). The dou-
ble occurrence of the label [2,1] in the DCME for irrep
[8, 4] indicates the necessity of a seniority multiplicity
label to uniquely differentiate the DCME in that case.

The WDCME and the DCME of this section both re-
duce to the unit factor for j=1% as should be the case.
Interestingly the WDCME has been identified as form-
ing the transformation matrix between equivalent bases
labeled by weights and the generalized branching theo-
rem on the one hand and by a plethysm scheme on the
other. The DCME forms the Racah factor in the

For the case Ny =N, the DC decomposition plethysm scheme. Qur earlier work has shown the
S, ® (Szm1)2\34m1/321v1 ® (S,;)""! with intertwining sub- DCME forms the transformation matrix between equiva~
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TABLE II. Row and column labels of Racah factors DCME our general development remain: exposition of a consis-

of Eq. (5.5) for N=3, [2/]=[2] or [4] [} 1 }1} ), tent phase scheme in Gl(z) and Sy exhibiting to what ex-
tent relative phases are fixed and which phase conven-
(a) [2f]1=12] J=1~14,2] ay=[2] np=[1] . Jp=1 tions are arbitrary, and elucidation of an algorithm for
A (3] (2. 1] the convenient evaluation of a general DCME in S,.
Jy o >
2 /92 (5/9)1/2
0 - (5790178 (4/9)1/2
() [27]=[4] Ap=(1] 2 dy=2 ICf. V.V. Vanagas, Algebraic Methods in Nuclear Theory

J Ag=[2] A= 1% (Vilnius LSSR, USSR, 1971) (in Russian).
2J.J. Sullivan, J. Math. Phys. (a) 14, 387 (1973); (b) 18,
4~[10,2] A (3], [2,1] 756 (1975); (c) 16, 1707 (1975); (d) Preceding paper; (e) Pro-
J4 4, 2 3 ceedings of the International Symposium on Mathematical
3~1[9, 3] A (3], [2,1] 2, 1], (1] Physics, Mexico City, Jan, 5—8, 1976, Vol. I, 253. Other

Jy 4, 2 3,1 a : :
pproaches to a general recoupling theory appear in: P, H.
2~1(8,4] 3 ‘[13]' [26 1, 2,1 '[32’ 1, [2,1] Butler and B.G. Wybourne, Int. J. Quant, Chem., 10, 581
L~ [7.5] t '+ 2 & 1] e (1976); L. A. Shelepin, Proc. P.N. Lebedev Inst. 70, 1
4 3 3 ’i o 1 (1973); V. P. Karasev, Proc. P.N. Lebedev Inst. 70, 141
1 ’

(1973) (transl. Consultants Bureau N.Y., 1975).
3T. Yamanouchi, Proc. Phys. Math. Soc. Jpn. 19, 436

(1937).
I, M. Gel’fand and M. L. Tsetlin, Dokl, Akad, Nauk SSR 71,
. . . 825 (1970).
lent bases labeled by different generz‘;.hzed branching 5G. Racah, Phys. Rev. 76, 1352 (1949); Ergeb. Exakten
schemes and the WDCME forms the isoscalar (Racah) Naturwiss. 37, 28 (1965); or A. de-Shalit and I. Talmi,
factor in these schemes. Two outstanding problems in Nuclear Shell Theory (Academic, New York, 1963).
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Unitarily equivalent multiparticle Hamiltonian systems
yielding equal scattering for corresponding states

A. W. Séenz® and W. W. Zachary

Naval Research Laboratory, Washington, D. C. 20375
(Received 19 December 1977)

Consider a pair of nonrelativistic N-particle (N > 2) systems with unitarily equivalent Hamiltonians H and
W*HW. Typically, W*HW involves nonlocal multiparticle interactions even when only local pair
interactions are present in H. For the respective cases when H involves short-range interactions alone and
also when it involves long-range ones, sufficient conditions are established in order for a scattering
amplitude of the first system pertaining to any states in given entry and exit channels to equal the
amplitude of the second system pertaining to corresponding states. This is accomplished by a time-
dependent approach. The correspondence in question assigns to each channel state of the first system a
channel state of the second system in a bijective and intuitively natural manner. Nontrivial examples are
given of unitary operators W for which the above equality holds for all channels of these systems. This
applies to a large class of interactions in H, including interactions with suitable long-range parts. The
present work is the theoretical foundation of a new method of the authors, discussed elsewhere, for

investigating many-body nuclear forces phenomenologically.

1. INTRODUCTION

In a previous publication,® we derived necessary and
sufficient conditions for two unitarily equivalent nonrel-
ativistic Hamiltonians to yield the same S operator for
single -channel scattering. Our work was based on a
time -dependent approach similar to that of Ekstein, *
whose sufficient condition is generalized. An important
contribution of Ref. 2 was to exhibit the power of time-
dependent scattering theory for obtaining criteria of
scattering equivalence. Unfortunately, the formalism of
that reference has the essential limitation of being in-
applicable to scattering phenomena involving bound-state
fragments in the initial or final channels. Time-depen-
dent methods are also used in the present publication, in
which the approach of Refs. 1 and 2 is extended to
multichannel scattering.

This extension is of direct relevance to nuclear
physics, since it forms the basis of a new method® for
the phenomenological study of many-body nuclear
forces. The method has been successfully applied re-
cently®® to the bound trinucleon systems. However, the
present paper is focused on the basic issues of scatter-
ing theory concerned and is understandable without any
knowledge of its nuclear applications.

Let H and W*HW be two unitarily equivalent, non-
relativistic, N-particle (N> 2) Hamiltonian operators
acting in L3(R*¥). Typically, W*HW involves nonlocal
multiparticle interactions if N> 3, even if only local
pair interactions occur in H.* In Sec. 2, only the case
when the interactions in H are of short range is con-
sidered. The set of channel subspaces defined in that
section for the case when the Hamiltonian of the N
particles of interest is W*HW is in bijective corre-
spondence with the set of channel subspaces appropriate
to the situation when their Hamiltonian is H. The defini-
tion is very natural physically. Given any pair of chan-

A This paper was completed when A.W. Sfenz was on
sabbatical leave at the Department of Physics, Princeton
University, Princeton, N.dJ.
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nel subspaces #,, #, of the latter type, it is proved
under rather weak assumptions that the scattering am-
plitude for the process 7, — 25 is equal to that for the
process f,- ¢; for each in state /, = //, and each out
state g, ¢ /5. Here 7,(7,) is the in (out) state into which

fo{gs) is mapped by the bijective transformation in

question. In Sec. 3, the theory of Sec. 2 is extended to
a large class of nonrelativistic Hamiltonians H whose
interactions can have both short-range and long-range
parts. Suitable Coulombic potentials are included

among these interactions. The generalization of the
main results of Secs. 2 and 3 to short-range interactions
with hard cores and the inclusion of spin and statistics
is straightforward, but we have elected not to discuss
these matters to avoid cumbersome notational complexi-
ties. It is also possible to formulate our results in the
language of two-Hilbert space multichannel scattering
theory® but, although elegant, this way of expressing
our theory is less transparent physically and less con-
venient for applications than the standard multichannel
scattering formulation employed in this paper and will
not be mentioned any further here.

In Sec. 4, we consider two nontrivial examples of
unitary operators W for which the above equality of
corresponding scattering amplitudes holds for all entry
and exit channel subspaces /7, and //,. This equality
holds in a large variety of cases in which H involves
only short-range interactions or interactions which also
have a long-range part. One of these examples is an
operator W of the form [+ K, where K is related to a
compact operator in a certain L® space. The other
example is an operator W which is a multichannel ver-
sion of the transformations termed Bohm —Gross —Baker
transformations in Ref. 1. Single-channel analogs of
our examples have been extensively applied in nuclear
physies.” Certain formal unitary operators used in
Refs. 4 and 5 for N=3, when expressed in standard
Hilbert space language, are essentially special cases of
the multiparticle operators W investigated in Sec. 4.

An asymptotic theorem on the long-time evolution of
wavepackets when certain long-range potentials act,
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which is needed in Sec. 4, is stated and proved in the

Appendix.

2. SCATTERING EQUIVALENCE WHEN THE
INTERACTIONS IN # ARE OF SHORT RANGE

We consider N
Hamiltonian operator ¥, self-adjoint in //=
Typlcally, H is given in a formal sense by

_Z/ 2)11) AL + Z/ Vij’

1< i<jsN

> 2 distinguishable particles with a
LYR™).

2.1)

where the V,; are pair interactions of short range,

i.e., operatm s of multiplication in # by approprlate
real functions V, (x; —x;) on R®. For the general pur-
poses of this section, detailed definitions of H and most
of the other Hamiltonians therein are irrelevant.®

Let D={C,,...,C,} be a partition of the Nintegers
(particles) {1,..., N} into # “clusters” C,,...,C,,
where we always assume that # = 2, The number of
integers in each C, is denoted by 5z,. Consider a linear
mapping v=(X,,...,%Xy) — (Xp, £5) of R* onto itself
having a Jacobian of absolute value unity. Here X,

=(X,,...,X,)c R" specifies the center-of -mass vec-
tors X, = \‘,:c iy, /M, of the particles in the various
clustels where 11 1= Yie ¢ . For n <N, g,

=&, ..., L Je R¥W™ determmes their relative posi-

tions in each cluster, £, (r=1, , N — 1) being a linear
combination of differen‘ces X, —xk such that j and % are
in the same cluster, We write t'” for the vector

(£,) ¢ R* "™ whose components ¢, involve only differ-
ences of this kind with j, t<c C,. N

We associate with D the “free” Hamiltonian #,, a
self-adjoint operator in #, formally obtained in the
case (2.1) by omitting from this expression all v,
linking different clusters. This property will be as-
sumed in the sense that

(Hp D) = HEPX) Lo (£17) +

+ 2o (")
(n1>’)

for all /'« # of the form Ax)=F(X)ii_,0,(£7), where

FeDAHY), o, e D) (¢,=1) it n,> 2 (n,=1). Here Hj

is the unique self-adjoint operator in L*(IR®*") which is an

extension in L*(R*") of -3 ., (ZMI)_IAXI on C;(R*") and,

for 1,= 2, I, is the internal Hamiltonian of C,, a self-

adjoint operator in L3 (R*'""""), formally constructed

in the above example from the operator of type (2.1) in-

volving only /, j< C, by eliminating the center-of-mass

motion.

1l 0 (51 (2.2)

1#1'=1

Let D be such that either »= N or that » > N and that
each /;, with »z, > 2 has a nonempty point spectrum. Let
@ be a channel consistent® with D, i.e., a pair o =a,
=(bp, D), where b, is empty for »=N and is otherwise
a set {w,,n, 2} of e1genstates of 11,, one for each / with
n, > 2. The corresponding channel subspace //_ is the
set of all ¥_ & # of the form

¥ ()= F(Xp) Iy (1),
where F € L*(R®") and ¢,=1 for n,=1.

(2.3)

An immediate consequence of (2.2) and (2. 3) will be
needed, namely, that
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(Hp¥ )(x) = [(HY + e, )F I(XD)lli ,(£D) (2.4
for each of the states (2.3) with F ¢ D(H}). Here ¢, is

the sum of the energy eigenvalues of all the bound states
¢, when # <N and is zero when n=N,

For each channel o = @ ,, the Mgller wave operators
are given by

Q;:s—limﬂa ¢ (2.5)
-t ’
if the respective limit exists, Here
Qa,t: V);UD,!EOL
for ~ o« <t <eo, with
Up =exp(-ilHy), V,=exp(-ilH) (2.6)

over this range of /,'° E, denoting the projection from

# onto #,.

When H is of the type (2.1), the existence of the wave
operators (2.5) has been proved for general N =2,
The more delicate property of asymptotic completeness
has been proved for N> 3 only in a relatively small
number of cases. ' These proofs of existence and
asymptotic completeness apply to appropriate short-
range potentials.

We now consider the case when the Hamiltonian of the
N particles of interest is

H=W*HW,
where W:/4/'—/# is a unitary operator. We shall also
need to define “free” Hamiltonians H, which will play
a role with respect to A analogous to that of the opera-

tors Hy in relation to H. Before defining the operators
H,, we shall impose certain conditions on W.

In addition to being unitary, it will be supposed in
this section that W has the following two properties for
each D=1{C,,..., C,| (n=2):

(1) The limits

‘i:leL/D*,tWUD,z:WD 2.7

exist, their common value being a unitary operator Wj.
In terms of the mapping v i~ (Xp, £,) we define (/, ,: //
— # as the unique unitary operator such that

(lip, D) = [exp(~ HLF (X ) 0(&p) (2.8)
for functions /< // of the form
) =F(Xp)e(E,), (2.9)

with F e LAR®*") and ¢ ¢ L*(R*" ") (p=1) if n <N
(n=N).

(2) For each e # of the type specified immediately
after (2.2),

(Wp ) == F(Xp) T (e, )5,

where ¢, is a unitary operator on L2(IR*"1""’) when n,
* 2 and is unity when »,=1.

(2.10)

Examples of unitary operators W satisfying these two
conditions for all D will be given in Sec. 4.2 As far as
we know, the problem of characterizing such operators
in general is open at present, *

For a given D, (2.7) asserts that W, arises from W
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by making an infinite time displacement, toward the
past or future, of the centers of the pertinent clusters.
In a rough intuitive sense, this is the same as spatially
displacing these centers infinitely far away from one
another. Of course, the obvious precise statement of
this equivalence is only true under suitable conditions. 2*

For each D, we define
Hpy=WiH W,

Because of (2.9), I;(Df satisfies an equation of the same
product structure as (2.2), with the %, replaced by
wihv, and so forth, but with the same A} and F, where
f=W}/, with f as stated immediately after (2.2). That
is, loosely speaking, I7D contains no interactions be-
tween different clusters of the D considered and W,
does not affect the center-of-mass motion of the
clusters.

Let a=a, be a channel in the sense defined previous-
ly. We define the subspace #, of channel states of the
transformed system corresponding to //, as the set of
all states

V=WV, Y, cH,.

Since (2) holds for all D, \ffa has the same type of pro-
duct structure (2.3) as the corresponding ¥ .

The properties of the operators ﬁD and subspaces %7&
stated in the proceding two paragraphs appear to be
essential to construct a physically reasonable multi-
channel scattering theory when # is the Hamiltonian of
the N particles. This was our motivation for imposing
condition (2). Nevertheless, it is not necessary to
assume that this condition is satisfied for any D in order
to prove the main results of this section —those stated
in Theorem 2. 1.

For each channel & = &, the Mgller wave operators
appropriate to the case when the Hamiltonian of the N
particles of interest is H are defined by

Q,=s-limQ, , (2.11)
when the respective limits exist. Here

Qo =VIUp Eq, 2.12)
where

Up,,=expl-itH)=WsU, ,Wp,
V,=exp(~itH) = WV, W,
and where Ea denotes the projection from /4 onto #,.

Let o = o, and 8= B, be channels consistent with the
respective cluster decompositions D and D’. Provided
the pertinent wave operators exist, we define partial
scattering operators Sy, and S;, for the original and
transformed system, respectively, in the conventional
manner;

S =0y, Sgo= Q4.
(Theorem 2.1 entails that S,, exists if S;, does.) We
shall be interested in the case when the scattering
amplitude from each in state of //, to each out state of

#, and #/, is equal to the scattering amplitude between
corresponding in and out states of 4, and //;:

1690 J. Math. Phys., Vol. 19, No. 8, August 1978

(@55 Stafa) = (@3 Ssa fods ¥ faSHar ¥ gychy (2.13)

Za=Whg, e,

Theovem 2.1: Let @ = o, be a channel consistent with
a decomposition D and such that 2} exist. Then 52
exist. Moreover, if 8= g, is a channel consistent with
D', then (2.13) obtains for the channels & and 8.

.fazwzfaeya:

Remarks: Let Q, exist for all channels and suppose
that the familiar pairwise orthogonality property
R} N R;=1{0} holds for o+ B, where R% are the ranges
of Q. Using, in particular, (2.17) in the proof of
Theorem 2.1, one easily shows that asymptotic com-
pleteness holds for the ranges ﬁ; of the wave operators
Q2 iff it holds for the R%. That is, R,=R_ =/ (H) iff
R,=R_=#,(H), where R,=® R, R,=®_R*, the direct
sums running over all channels and 4, (H), #,(H) being
the subspaces of absolute continuity of H, H,
respectively.

A remark similar to that in the penultimate sentence
can be made about the scattering systems considered
in Sec. 3.

Proof of Theorem 2,1°°: We first observe that

Qa,t:exp(" iea/) V?[//D,tEw
N (2.14)
Q= exp(~ie,l) V)tkUD,tEa?

as follows directly, in particular from the appropriate
definitions, (2.4), and the facts that W,/ =#, and that
W, commutes with //; , and is unitary. This commuta-
tivity follows from the assumption that W, exists and

is equal to the limits (2.7), together with the fact that
{Up ¢ —= <t <=} is a unitary group.

Using (2. 12), (2.14), and the identity

WoE,=E, W, (2.15)
we can write
Q, =W*Q, W,+exp(-ie, )
XW*VHW/y = Up Wp) E,. (2.16)

In view of (2.7}, the unitary of {/, , and the uniform
boundedness of exp(-ie,/) W*V¥, the second term on the
rhs of (2.16) converges strongly to zero as f— +w,
From this fact, the assumed existence of Q3 and (2. 14),
we infer that Q% exist and are given by

Q= W*Qi W, (2.17)

under the present hypotheses.

We now prove that (2. 13) obtains for the channels
@=oa,, B=p8,. Using, in particular, (2.15) and its
analog for channel B, it is easily seen that (2.13) is
equivalent to

Say=Wp.5, . (2. 18)

Expressing §Ba in terms of the operators fz;x and fzg as
given by (2.17) and its analog for channel 8 and invoking
the unitarity of the relevant operators, we find that
(2.18) is satisfied for the channels @ and g considered.
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3. GENERALIZATION TO THE PRESENCE OF
LONG-RANGE INTERACTIONS IN H

In this section, we find it necessary to be rather
specific about the Hamiltonian H of the N particles,
This is due primarily to the complications introduced
by the occurrence of long-range interactions. H is de-
fined here as the unique self-adjoint extension in #/
= L*(R%) of a differential operator of the form (2. 1) on
C5(R*Y), with each V,, (1 </ <j<N), an operator of
multiplication by a function V,,(x; —-x,)(x,,X; € R®), with

V()= VS + VE(). (3.1)

The short-range and long-range parts of V,,(-), V()
and V5(), respectively, are real functions on R®. We
also suppose that there exist three positive constants,
6, C, and p, with 0 <p <1, such that

(1+ {x) v ()| e LR + L*(R®), (3.2a)

| Ve ()] < C(1+ |x]) e, (3. 2b)

for all positive integers p.

For every D, Hp and the 7, are as defined for systems
of the type (2.1) by the third paragraph of Sec. 2 and the
second sentence of Ref. 8. In particular, H, is the
unique self -adjoint extension in # of the differential
operator (2.1) on CJ(R*) for the V;, in (3.1). Naturally,
the terminology @ = &, and //, will be understood now in
terms of the latter operators /z,, Hence (2.2) and (2.4)
are satisfied for elements of 4 of the respective indi-
cated types in terms of the operators H, and %, of this
section.

Consider a cluster decomposition D={C,,...,C,].
For every nonnegative integer 7, r;,',’t is an operator of
multiplication in the momentum -space representation
by L*(R*") by a function I‘,‘fy’t(P) defined recursively by

F;)O,)t(P):O’
, (3.3)
T3P = [ VilsM?P+ v, TV (P))ds,
r=1,2,...,
for P=(P,,...,P,)c R*, Here sM™'P

=(sM'P,,...,sM'P), with M, =3 ,__ m, as before,
Vp=(Yp,seees VP"), and [/, is the following real function
on R*";
—_ L —
{/L(xl’.'.’xn)-lsmusn icen Vii (xx xu)° (3.4)
i€c,

At each such 7, let Gy, be the unique bounded self-
adjoint operator for which

(G;)r,)g f)(X)Z(FK),F)(XD)(P(ip) (3-5)

when [ is of the product form (2.9), with F and ¢ as
specified immediately after the latter equation.

For every channel @ = «, consistent with D, we define
modified wave operators:
Q= S;}}fma ot (3.6)
if the respective limits exist, where now
Qa,t = V)tkU’D.tEa'
Here E, is the projection of /4 onto #

«» interpreted in
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the present sense, V, is given by (2.6) in terms of the
H of this section, and

U’D,t:UD,texp(" iG(D",l;),

where U, , is defined by (2.86), with H}, understood as
in this section. We denote by m the smallest positive
integer greater than p™' -1,

It can be shown that the wave operators (3. 86) exist for
all channels when the conditions (3. 1)—(3.2b) on the
V,; are satisfied. Actually, we have proved this under
much weaker hypotheses on the V,-L]., with » understood
in a generalized sense.?®

We again consider a unitary operator W: 4/ — /4. In
the present section, W, is a unitary operator having the
properties (1') and (2) for all D, where the latter prop-
erty was stated in Sec. 2 and the former property is as
follows:

(1) The equations

WD:St'_ltignUBk,c Wl 4 3.7
hold. Here [/, ,: //—/# is the unitary operator
Uy =Up, s exp(=iGgH)), (3.8)

with {/, , as in (2.8).

Since {{}, , controls the long-time evolution of the
centers of mass of the clusters of the D of interest for
the interactions now being considered (Lemma A.1 of
the Appendix), (3.7) can be interpreted physically,
grosso modo, in a manner similar to that mentioned in
connection with (2.7).?” The motivation for imposing
condition (2) here is the same as in Sec. 2.

We define H, Hp, #/,, and E _in this section just as in
the previous one, but of course with H and H, under-
stood in the sense of the present section. When H, in-
stead of H, is the Hamiltonian of the relevant N parti-
cles, the modified wave operators corresponding to each
a = a, are defined by (2.11) when they exist, but with

Qa,t:V?Ui),tEa'

Here V, is as in (2.6) in terms of the present H and
[7;),:: W)I.()Ub,tWD'

Naturally, the partial scattering operators S, and
§Ba of this section are given by the same formulas of
Sec. 2, with Q;, @, ©;, and &, signifying the respec-
tive modified wave operators of the previous paragraph.

Theovem 3.1: Let a=a, be a channel consistent with
the decomposition D and let ©, exist. Then , exist.
In addition, let 8= B, be a channel consistent with the
decomposition D’. Then (2.13), interpreted in the sense
of this section, holds for the channels o and B.

Proof: A proof similar to that of Theorem 2.1, with
U/, playing the role of {/p,; in the earlier proof, serves
to establish the present theorem. In particular, one
employs equations of the same structure as (2. 14), but
with {/, ; replaced by {/; ,. To derive these equations,
one invokes, among other properties, the commutativity
of W, with {/}, ,, which follows by using condition (2),
(3.5), (3.8), and the corresponding commutativity
property of {/p ,.

AW. Saenz and W.W. Zachary 1691



4. EXAMPLES OF OPERATORS ¥ FOR WHICH
(2.13) HOLDS FOR ALL CHANNELS

These examples are of two types. In subsection A of
this section, we consider a unitary operator W= W,
=I1+K, where K is defined in terms of a certain com-
pact operator. In subsection B, we discuss a unitary
operator W=1MW, of the Bohm —Gross—Baker type. From
results of this section, it follows for all I that W, and
W, have property (1') of Sec. 3, and therefore (1) of
Sec. 2, as well as property (2) of See. 2,

Suppose that one of the following cases obtains: (i) #
and every H, are self-adjoint operators, with each H
satisfying (2. 2) for the indicated functions / and with
the wave operators (2.5) existing for all channels; (ii)
H and every H, are as prescribed in Sec. 3, with the
p -independent constant p in (3.2b) obeying 5 <p <1,
Then (2.13), undevstood in cither the sense of Sec. 2
ov Sec. 3, holds for all channels a and B iwhen W=1W,
(i=1,2). This follows by applying Theorems 2.1 and
3.1to W, and W,, the application being legitimate in
view of the properties of these operators stated in the
penultimate sentence of the previous paragraph and of
the assumptions made in the first sentence of the pres-
ent paragraph,

It is physically reasonable to demand that the inde-
pendence of the relative motion from the center-of -
mass motion, which holds for typical nonrelativistic
N-particle systems with translationally invariant inter-
actions under suitable technical assumptions, should
also hold for the corresponding N-particle transformed
systems. More precisely, let the Hamiltonian H of the
original system satisfy the equation

(H)(x) = (H,G)(X)x(n) + GX) () (n)

for each g< D(H) of the form g{(x) = G(X)x(n), with
Ge D(H,), x< D), Hy(h) being the usual self-adjoint
Hamiltonian in LZ(R*}(L*(R* ¥ 1)) governing the latter
(former) motion. Here a transformation x= (x,,...,%,)
i~ (X,n) with Jacobian of absolute value unity is under-
stood, where n=(n,,...,ny..) € R*"""), each 0, being
a linear combination of differences x,; —x,. Plainly, for
all such g an equation of the same structure will obtain
for H¥, where H=W*HW and = W*g for the unitary W
of interest, the same H, and G appearing in both equa-
tions, if

(Wg)(x) = GX)(rex)(n) 4.1
for every such g, with » a unitary operator. The opera-
tor W, in subsection A evidently has this property and
the operator W, in subsection B can be specialized to
possess it. However, the property in question is irrele-
vant with respect to whether (2. 13) holds for any chan-
nel o and B, either in the sense of Sec. 2 or Sec. 3.

A. Example W =W,

Let us express the position vectors X;,...,X, of the¥N
particles in terms of the variables X, 6, (i=1,...,3N
—4), R. Here X is the center-of-mass vector }_,m X,/
34 m, of the particles and the 6, €1, and R=( 1c;c;<nCy;
X|x; -%;1%)!/2 ¢ [0, =) are the so-called hyperspherical
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angles and the hyperspherical radius, respectively. The
c;; are positive constants and each I, (i=1,,..,3N -4)
is a finite interval. We set I, ,.,,= [0, =) for conve-
nience. The 3(N —1) variables 6,, R are such that each
coordinate difference x; —x, can be expressed solely in
terms of them.?*8

More precisely, we consider a mapping 4 : (X, v, z)
~x=(X,...,%x,) of R*x/}ix/ into R*®, where /i
=X, gl A being a nonempty subset of {1,...,3(n =1}
and B=1{1,...,3(N-1)}\A. In addition, we suppose
that 3(N —1) ¢ B. The intervals /, in the cartesian prod-
ucts /) and A/ are ordered in a fixed, but arbitrary
manner, If we regard, as we shall, /}f and /V as sub-
spaces of appropriate linear spaces R” and R?, normed
in the usual way and with p and g positive integers such
that p +¢=3(N-1), it is clear that // is bounded and A/
is unbounded. The boundedness of /] will play an essen-
tial role in this subsection.

For any positive values of the ¢;;, there are many
ways of selecting the 6, and I, so that 4 has the following
properties, which will be assumed to hold henceforth.
First, £ (()) is a one—one differentiable mapping onto an
open subset () of R* differing at most from R*" by a
set of measure zero, where () is obtained from R® X/ x/A/
by deleting the endpoints of all the /,. Second, the
absolute value of the Jacobian of 4 at any (X, v, z) ¢ ()
equals o{z), where ¢ is a real-valued function on /}
which is positive at each of the latter z values and
bounded on each bounded subset of /.

Hyperspherical coordinates per se are of little
interest here. They were introduced merely as a sim-
ple, convenient way of defining a mapping 4 with the
stated properties,

Let W, :/'— /' be a unitary operator of the form

W, =I+K, (4.2)
K :4 — /4 being a bounded operator such that

(ENy =0 "R 7K, v, N2, 4.3)
for fe #, where

02 (2) J(X, v, 2) = f(x) (4.4)

and where, of course, « is the image of (X,v, z) under
4. The assumption that fe # together with the stated
properties of £ entail, via a change of variables in the
pertinent integral, that 7(X,y, -}e L*(A) a.e. The sym-
bol % in (4. 3) denotes a compact operator from L*(/A)
into itself, but it is easy to see that K is not compact. ?°
The factor ¢"'/2(z) has been introduced for convenience.

Consider the simple example in which
k=[exp(ia) —1]p,

where « is a real number and p is a projection operator
from L2( /) onto a one-dimensional subspace spanned
by & ¢ L*( /), with

1] 200, = 1. (4.5)
Hence
K=[exp(ia) -1|P
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in this example, P :# — /4 being a projection of infinite-
dimensional range, obviously given by

(PN() =07 2(2)(®, F(X, v, )24, 2(2) (4.6)

for each fe /4. That P is a projection follows easily,

in particular, by changing variables in the integral of
interest and using (4.5) and Fubini’s theorem. [Argu-
ments of this type will be used henceforth in this sub-
section without explicit comment. | Hence the operator
W,=1+ [exp(ia) — 1| P =exp(iaP) appropriate to this
special case is unitary. For future use, we remark that

NPAIE= [ o Jl (8, 7K, 9, W2y, | PdXdy <o (4.7)

at each such f, |- |l standing as before for the #
=L*(R*) norm.

Theovem 4.1: For each D, let [/, , be the operator
defined by (3.8) for m =1, where each function V%,(-)
(1 </ <j<N)occurring implicitly in this definition is a
real function on R® satisfying (3.2b) for p=1 with a
constant p >5. Let W, : 4 —~ # be the unitary operator
(4.2), with K as defined in the paragraph containing
{4.2). Then (3.7) [and therefore (2.7)] holds for all D
with W=W, and W,=1,

s -lim Ut e Wy Uiy, =1

Remarks: Let W] be a unitary operator of the form
I+ K’, where (K'f{x)=(«kH{X, +)}n) for each fc /. Here
H(X,n)=/(x), the linear transformation x=(X,,...,Xy)
t—~ (X, n) mentioned in the paragraph containing (4. 1)
being understood and x: L3 (R*W 1)~ LAR*¥ V) isa
compact operator. Then the conclusion of Theorem 4,1
holds with W, replaced by W/ as follows by an approach
analogous to that used in the proof of this theorem be-
low. When the action of K’ on fc /4 is expressed in
terms of suitable hyperspherical coordinates, an equa-
tion similar to (4.3) is obtained, as expected, but with
k in (4. 3) replaced by a compact operator from L3*(A/’)
into L*(A/"), where AV =x3¥"1[,. In contrast to the
usefulness of these coordinates elsewhere in this sub-
section, this is merely a cumbersome restatement of
the above definition of K'.

Proof of Theovem 4.1: In the proof, K and % will be
as defined in the paragraph containing (4.2). The
assertion of the theorem is clearly equivalent to the
statement that

s-imK{/;, ,=0

t =t

(4.8)

obtains for each D. To prove this statement, we make
a series of simplifying remarks.

Since % is compact, there exists for each¢>0a
finite operator sum 3 7.,a,;p, such that

”k—leaipi”Lz(N) <¢, (4.9)

the a; being complex constants and each p; a projection
from L*(/) onto its one-dimensional subspace spanned
by &, with |l ®,/,2.,,=1. One easily sees that (4.9) is
true when %, p,, and || - |l 2.4, are replaced by K, P,,
and |i-ll(i=1,...,7), where P, is defined by (4.6), with
@, replacing ®, With the aid of this last result and of
the unitarity of each [/}, ,, we conclude that
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for f< /4 and all D. Whence (4. 8) holds if

s-limP(/;, ,=0 (4.10)
t~taw !

for the same D when P is given by (4.6). From now on,
we fix &, and therefore P.

It is enough to prove (4. 10) for every D in the case
when &, besides satisfying (4.5) is a bounded function
of bounded support. To see this, observe that for each
¢ >0 there exists a &’ « L%( /), bounded and of bounded
support, and such that || ® - &'l 2 ,, <c and &'l 2.4,
=1. Define P’ by (4.5), with &' replacing &. Then
elementary results of integration theory, together with
(4.5}, the last two properties of &', and the unitarity
of each {/}, , yield

IPLy Il <P Uy Fl+ 26l £

for fe/# and all D, from which the asserted sufficiency
follows. Henceforth, $ will be a bounded function of
compact support.

In the remainder of this proof, D={C,,...,C,} will
be fixed and f will be a fixed function of the product form
(2.9), with Fe §, and ¢ a bounded function in
L*R*"™") for n <N and ¢ =1 for n=N. The space §, is
defined in the first sentence of the paragraph following
Eq. (A1) of the Appendix. Since [[ P/}, ,ll=1 and since
the closed span of the elements of the type (2.8) just
specified equals #/, it suffices to show that

Liml| PU/p,  fll=0. (4.11)

An important simplification in the proof arises from
the fact that, under the present hypotheses, Lemma
A.1 entails that

bm Uy, - Zp, ) fI=0, (4.12)

Zp,, being defined by (A3) of the Appendix for the f, F,
and ¢ presently under consideration. In {A3) and else-
where, F denotes the L*R?*") Fourier transform of F.

Because of (4.12) and the boundedness of P, (4.11)
will follow if it is proved that

Lim IIPZ; ,f1I=0. (4.13)

We proceed to do this.

Let X'=supp®. Using, in particular, (4.7), (A3)
interpreted in the present sense, the boundedness of ¢,
the boundedness and support properties of &, the fact
that ¢ is bounded on the compact subset X< R? and
making the change

u=f1X
of integration variable for ¢ #0, we find readily that
I PZD,:f”2 < const | ! | -3(n~1)

XfRSxN[fK II‘:(Yt(u,y,z))]dzlzdudy (4.1

at every such /. The vector-valued function Y ,(u, v, z)
is F'Y=("'"MX,,..., "M X,) expressed in terms of the
indicated vector variables and is thus of the form
(Mu+t'8(y,2),..., Mu+ {8 (y,2)), where, for each
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I=1,...,1,B,: // xN--TR*is / independent with
[B,(v, z)| bounded on each bounded subset of /| X A/.

Since F is of compact support and | B,(v,z)! is bounded
on /} xK for each I, it is easy to see that, for any pre-
assigned /, >0, we can replace R? in the domain of
integration in (4.14) by some compact, ¢-independent
subset of R® when ¢ 2 /,. Thus the integral on the rhs of
(4.14) is bounded by some finite, {-independent number
for t=1/,. It follows that

WPZ, ,fll<const|t|-3m1)/2

at each such / and therefore that (4, 13) holds.

B. Example W = ¥/ ,30

For each D={C,,...,C,}, it will again be necessary
to consider the transformation x=(x;,...,Xy)

— (X,, £,). For notational convenience, we shall denote
Xp=(X,,...,X)and £, =(§,,..., &) by X and ¢,
respectively, in this subsection, We introduce mappings
h and hp having the following properties for every D:

(a) 7 :R*™ — R and »?: R* — R are injective and
continuously differentiable, and their respective
Jacobians J{x) and J,{x) are nonvanishing on R*. More-
over, h is independent of D and k? is the identity map
on R*¥ for n= N, We write i(x)=(h,(x),...,h,(x)) and
#P(x) = (h2(x), ..., hB(x)) for each x=(X,...,X,) c R*¥.

(b) f n <N, h® leaves each X, invariant, i.e.,

X N
2im;hP(x) =2, m;x;, xcR¥, (4.15)
j=1

i=1
{e}HieC,CDandn,=2, then h?{x) - p depends on x
only through X, —x, with j, 2 C. We can thus write
p7(£)=h2(x) - X, for each i and x, where the lhs is
independent of X [in this notation, which is abusive for
the case n=N, each p?(#) is identically zero by (a)
and (c) in this case].

(d) Define p,(X, £)=h,(x) -x, for each i and x. If n <N,
then at each (X, £) € R* xR* ¥

lim | p,(X, &) -p2(8)| =0,
v{X)=o

V(lli[r)n_wl ap;(X, £)/3X, ,|=0, (4.18)

lim | 0pX, &)/ ¢, , - 3008/ 28.,,| =0,

foralli=1,...,N, I=1,...,n, ¥=1,...,N=-n, p
=1,2,3, where »(X)=min, ¢ ;e X, - X,) and p labels
the pertinent Cartesian components. If n= N, then the
first two Eqs. (4. 16} ara satisfied at each X € R* over
the stated range of indices.

(¢) At every i, », [, and p in (4.18), p,(X, £), @2(8),
and their partial derivatives with respect to X, , and
¢, , are bounded over R*"XIR*Y"™ when n < N, This
statement holds for the partial derivatives with respect
to X, , with R*"XIR*¥™™ replaced by R* when n=N.

Remavrks:

1. For any given D, (a), (b), and (¢) jointly guarantee
that property (2) of Sec. 2 holds when W, is replaced by
W, 5 in (2.10) and that W, , [defined in (4.18) below| is
the unit operator in LZ(R*¥ ") when D corresponds to
the free channel. However, it is not necessary for (b)
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to hold in order for Theorem 4.2 to be true. Assump-
tion (d) states for each D that h(x) and k,(x), as well as
their derivatives, agree at large intercluster separa-
tions [v(X)—~ «|. A number of the hypotheses about &
and the %, have been made to avoid annoying complica-
tions. Specifically, the conditions on differentiability
and the nonvanishing of the pertinent Jacobians can be
slightly relaxed.

2. It is perhaps not obvious that mappings %~ and &,
with all of the above properties exist. Here is an exam-
ple and many more can be easily devised. For each
¥x€R¥ and D={C,,...,C,}, let

Norm VMR ‘
h‘(x):x'*nzf.’;(ﬁ) g, 15, i=1,..., N,
h20=r,+ 5 (20 g (lr, 9%y, ieCyi
Px)=x, o U, Zilix )Xy, 1eCpyi=1,...,n,
1 = 1 i

where, of course, the summation in the expression for
h?(x) is to be omitted if i € C, with n,=1. Here m, is
again the mass of the jth particle and x;; =X, -Xx,. For
each i#/ (i, j=1,...,N), g;,:[0,%) =R has the proper-
ties: g, =g, g;; € CY([0,=)), g,,(r)=0(*"?) as r—-=,
and 2vldg,(v)/dv| + 1 g, (#})| <c on [0,=), ¢ being a
positive constant. Invoking, in particular, the contrac-
tion mapping principle in R3¥, it follows that (a) is
satisfied by this example for every D if ¢ is small
enough. It is easy to verify that the remaining conditions
on % and the k, are also satisfied for all D.

For every y </ and D, the operators W, and W, ,
are defined by

(W,)(x)=0(x) ph(x)), (4.17)

(W, (%) = 00 () Blip(2)), (4.18)

1/2 ]1/2 30

where o(x) = | J(x)! 2 and op(x) =1 Jp(x)

Using assumption (a) and elementary thecrems of
integration theory, one can show that W, and W, , are
unitary for all D. Notice that W, satisfies (4.1) for each
g of the indicated form if & fulfills the following addi-
tional conditions: (4.15) holds with &, replaced by » and
each h;(x) — X, depends on x=(X,, ...,X,) only through
differences Xx; -X,.

Theorem 4.2: Define each (/}, , as in Theorem 4.1.
Then (3. 7) holds for all D with W=W, .:

s;l}m(/’,;‘f Wollh =W, p.
Pyoof: In it, D={C,,...,C } will be considered fixed

and we will assume that » <N, The case n=N yields to
analogous, simpler arguments.

The operators W, , and {/}, , commute, since
W, pllp . and {/;, ,W, ,are equal when restricted to ele-
ments of // of the type specified by (2.9) and the line
following that equation. Combining this commutativity
with the unitarity of {/, ,, one sees that the theorem will
follow if
s-lim(W, -W, )/, =0.

1] =e0

(4.19)

In this proof, f will again be fixed and of the form
(2.9), with Fe $, and with ¢ a continuous complex-
valued function on R*%¥ " of bounded support. Reasoning
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similar to that in the proof of Theorem 4.1 shows that
(4.19) will hold for the D being considered if we estab-
lish that

lim || (ng hd Wg,D)ZDth” = 0-

Itli-o

(4.20)

To prove (4.20), we first change the variables of
integration in the integral |[{W, - W, )/, ,fiI? to X=X,
£ =&, and employ (A3) and the other pertinent defini-
tions, thus obtaining

(W, =W, )y FIF

= const l/I'Snf‘mSn*Rg(N_nJU'(X) 5) A(Xa };-, [)

XF(rV)o(E) - op(6)F( Do) |2 aX dt, (4.21)

where o' (X, £) =0(x), o0&} =0p,(x) [0p(x) can be ex-
pressed in terms of £ alone by our assumptions on %,
including (¢)], and the other new symbols in (4.21) have
the following meanings. We define

MX, g,/):exp[ﬁz’/'l‘lZ_J0 MX, 2= 1%, 9]

xexp{—i[T, (7)) =Tp (1)},  (4.22)

with T, ,(+) given by (A8) of the Appendix. We have set
Y=MX,...,MX), x=(X,,...,X), Y=(Y,,...,Y),
E=(E,..., &), and Ep=(E) ..., £&,). Over the in-
dicated range of indices, X, and Ej are obtained from
X, and {;, respectively, by replacing x by k{x), and

Ef’ is obtained from £, by replacing x by 7,(x)
[¢,...,&,., were defined in the second paragraph of
Sec. 2].

Next we change the variables X, of integration in
(4.21) to

w,= 117K, (1=1,...,n). (4.23)

leaving the remaining N-n variables §, unchanged. In
terms of the vector variables u=(u,,...,u,) and ¢
=(&,...,&_,) (4.21) assumes the form

(W, =W, )2,  fII?

= const‘f'ms,,mw,_,,, lo" (uy £, ON (uy £, 1) Glat, &, £)

—0p(8) Gplot, &,0) [*dude, (4.24)

where

o' (u, £, =0'(X, &),

N, &, =X, £, 1),

Glu, &, 1) = F("' P)o(E),
and

Golut, £, =F(1Y) o(E ).

The following assertions, proved below, entail jointly
the truth of (4.20). First, the integrand of (4.24) tends
to zero for a.a. (u, &) as |¢{| —«, Second, one can inter-
change the integral in (4.24) with the limit [¢] — <,

Let #=(u,,...,u) be fixed and such that v(x)
=min; ¢ <p<,/4, -1, >0and also let £ be fixed. Then

‘H{r}o[o”(u, £, —op(E)]=0, (4.25a)

lim [Glu, £,8) = G, £,8)]=0,

lHl -

(4.25b)
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|%il{nm/\’(u,g,/):l. (4.25¢)
The first assertion of the previous paragraph follows
by combining (4.25a)—(4.25c) with the boundedness of
op and Gp. This boundedness results from assumption
(e) together with the hypotheses that F ¢ §j and that ¢
is bounded and the appropriate definitions.

Before proving (4.25a)—(4.25c¢), we mention two
essential reasons why these equations hold at the in-
dicated points (i, £): (i)  and I, have been required to
agree asymptotically for »(X) — « in the sense (4.16);
(ii) taking the limit /| — « in (4.25a)—(4.25¢) is roughly
the same as letting v(X) - <,

Equation (4. 25a) follows directly at the stated points
(n, £) by employing the pertinent definitions [including
(4.23)] together with (4.16).

To prove (4.25b), we first remark that (b), (c), and
(d) entail jointly that the vectors

AI(X’ 5) Ei{l _xl

1y

= I=1,...,n
M, i€c, ’ T

n X, £),

N-n

E7 -0 = D,; [P]-(Xy £) —pf(X, 8],

i1

r=1,...,N-n,
vanish for fixed £ when v(X)— <. Here the b,; are con-
stants. Combining this vanishing property with the con-
tinuity of F' and ¢ and the relevant definitions, we see
that (4.25D) is satisfied at the desired (u, £) values.

Next we establish (4.25¢). The vanishing of A,(X, )
for each / in the last mentioned limit entails directly
that the argument of the first exponential in (4.22),
when expressed as a function of #, £, and /, vanishes
when [¢ | — « for fixed (u, £) such that v(x) > 0.

We proceed to show that the argument of the second
exponential in (4.22) has the same property, and hence
that (4.25c) is true at each such (i, £). Using (A8) of the
Appendix, we see that this will follow if for all integers
4 J, A, and u suchthatic C,, jeC,, 1 <X <pu<gn, the
function

t
Hli,uj(u:gyt): / [Vf]<;i(ix _)Eu)>
- V?j(}i(xx —Xu)>] ds

vanishes for every given (x, £) with v(x) >0 as [{[— =,
Henceforth in this proof, i, j, A, and u will be
as stated in the previous sentence.

Because of (e), |A (X, t)| is bounded for each /.
Employing this fact, the hypotheses on VL” made in the
present theorem, an elementary inequality, and the
appropriate definitions, one finds for Is| <[/} #0;

(& X)) - vi (- x,) |

<const|% | (la,x, )] + | a,(x,8)])

X[+ ] A%, 8) [+ | A,(X, )| ]<1+ 5, _qu-mp)
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const\;— Ha+ s Juy, —u, ), (4.26)
where the proportionality constants can be chosen to he
the same for all #, £, and /, p being the constant
greater than 3 mentioned in Theorem 4.1, The estimate
in the last line of (4.26) and an elementary computation
vield

Hyw i, 8,0=0(]1])

as |/i — « for fixed (u, £) such that v(u) > 0. The proof
of (4.25¢) is complete.

There remains only to justify the validity of inter-
changing the limit i/{ — *= with the integral in (4.24).
This follows by dominated convergence. Indeed, there
exists a positive constant /, such that, when [/} -/,
(4.24) is dominated for all (i, £) by a function propor-
tional to the characteristic function of a compact subset
of R xR*%¥-" the proportionality constant being in-
dependent of /. This dominance is easily proved by
using, in particular, the relation F ¢ C2(IR®"), the
boundedness and support properties of ¢, and the
boundedness of |p?(X, &) for every ;.
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APPENDIX: PROOF OF AN ASYMPTOTIC TIME-
EVOLUTION THEOREM WHEN CERTAIN LONG-
RANGE POTENTIALS ARE PRESENT

In this Appendix, we establish an asymptotic theorem
on the time evolution of wavepackets under the action of
the renormalized propagators (/, , when m in (3.8) is
unity. This theorem applies to types of long-range
potentials which include a wide class of Coulombic
interactions. Before stating it, some definitions are in
order,

Henceforth, we consider a fixed cluster decomposi-
tion D=1C,,...,C,}. Since in this Appendix we will only
consider the functions rg,;(p) of (3.3) for »=1, we find
it convenient to set

T, (P)=Ty(P)

for P=(P,,...,P)c R".

(A1)

Let §, be the set of all complex-valued functions 7
on R*" with L}(R®") Fourier transforms / ¢ C3(IR*") and
such that supp » does not intersect the set {(P,,...,P,)
¢ R*M;'P,=M;'P,, 1<k <[<n}, It will be convenient
to work with elements 7 ¢ #/ of the form.

/(\’) = ﬁ‘(XD) @(ED%

where v, X,=(X,,...,X,), and £, are related as in
Sec. 2, Fi §,, and ¢« LAR*V ") (¢ =1) if u< N (n=N),

(A2)

When I'j, (P) exists as a real measurable function,
as it does under the assumption of this appendix, there
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exists a unitary operator ./, ,: #/ — #/, uniquely defined,
in particular, by its action

N 1Y exp (e 25 a1,1%, )2
B T Plar & Ml

xexp[—iT, (V) F{'Y) olEy)

(A3)

on the elements 7 of the type (A2) just specified, whose
span is dense in /. Here Y= (M X,,...,M X,) and F
may, and will, be interpreted as the L*(IR*") Fourier
transform of F. Hence F is in the Schwartz space
S(IR*) of functions of fast decrease,

The promised asymptotic result is given by
Lemma A.1: For 1< <j<N, let V¥(.) be real func-

tions on R® satisfying (3.1) everywhere on R*¥ for p=1
with a constant p > % Then

Sl't}i_r}cl(é/b,t -Zp,1)=0, (A4)

where [/} , is the operator (3.8) for m=1.

Remarks:

1. When the VI;]. are Coulomb potentials, this lemma
follows from an estimate of Dollard. 3!

2. In the case m =1, the lemma applies under condi-
tions weaker than the sufficient conditions for the exis-
tence of the wave operators in this case stated in Sec.

3. As far as we know, it is an open question whether
results of the type (A4) hold when p is merely required
to be positive and, a for/iori under the very weak condi-

tions on the V%, considered by Alsholm™ in the context
of single -channel scattering by long-range potentials.

Proof of Lemma A.1: In this proof f will be a fixed
element of // as specified by (A2) and by the definitions
immediately after that equation.

The existence of the unitary operator {/, ,(m=1)
under the hypotheses of the lemma should be clear.
Since the linear manifold spanned by elements of the
latter type is dense in /4, it suffices to show that

B il (U, ~Zp ) 11=0 (45)

for the operators under discussion, || -|| again denoting
the L3(R*) norm.

In the case m =1 of interest, the relevant definitions
of this Appendix and of Sec. 3 and standard properties
of Fourier transforms yield

(o, =Zp 0 1)

[ () (S :
XG {7Y) 0(Ep),
where G, is the L2(IR*") Fourier transform of
G(2)= {exp[zl—lgl,Ml} Z 12]- I}Ft(Z)
for /=(Z,,..., Z,) € R*", Here F, is such that its
L3(R®") Fourier-transform is given by

F{Z)=exp[=iTp (2)F ().

Directly from the definitions, making use of the
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assumed properties of the pertinent functions and pro-
ceeding in a manner similar to that of Reed and
Simon, ** we obtain for /= 0:

”(Ub,t_ZDyg)f H
[ (MNR) A (M, M,
"[zr,ll (T) Z]“Gf</ > v (/ > ”3
UG,y e, ML=1G, ey 2,
2 1/2 ‘EL‘ 2\ 1/2 |
((T/—> H </__1 AII Zl > Ft\‘
[N .= 2
2\ 2.
< ~> 2. MY Z, \ Ft\
A =1 tz

H (A6)

where ||-ll,= I+l ;2. g3, and where the notation |z|
=(3%.,7:2)"? has been used for 2= {z,z,,2,) € €% In

(AB), we have employed the inequality
lexp(iv) = 1| =z v |2, veR,

Minkowski’s inequality, and familiar properties of
Fourier transforms. Specifically, in obtaining the
penultimate from the antepenultimate line of (A6), we
have used the facts that F, ¢ L(R®"), that F, is differ-
entiable, that F, and Aplﬁt are in L (R*") N L3(IR®")
({=1,...,n) and that F(P) tends to zero as the R® norm
of P tends to infinity.

Let P={P,,...,P {c R be such that for each
1<k <l<n, MP,~M,'P, lies in a fixed compact subset
of R® ~{0}. Then

ivpkrDyt(p)| =o([1]*), k=1,...,n, (A7)

for 1/{ — = if the hypotheses of the present lemma are
satisfied and if, in addition, p <1. The latter condition
entails no loss of generality. The constant entailed by
the O symbol in (A7) depends on the above compact sub-
set. One can derive (A7) by an elementary estimate of
the gradients Ve, of the rhs of the equation

W\ b - -

T, (P)= 1s)\>€ﬁsn iG‘ZA I, VE(s(M7'P, - M;P,)) ds,
i€Cy

which is itself an immediate consequence of (A1), (3.3),

and (3.4).%

(A8)

Employing, in particular, (A6), (A7), and the as-
sumption F e §,we directly conclude that

Wy =Zp D f Il =0(t]1*%) ~0

as {— if 3 <p <1, Hence (A5) obtains under the con-
ditions stated in the lemma.
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V,; zero except for V,,, which is an operator of multiplica-
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I3, (R®). This function is assumed to be such that the free-
channel Mgller wave operators {2.5), say (4, exist, are uni-
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Ref. 1).
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each center of mass X by a,: (T 2 x)=G(X,+a,§p), for
each g= /#/, where G(Xp, £,) is glx) expressed in terms of
center-of-mass and internal variables, We define v(a)
=minye;¢;<,! & —3; 1. The penultimate sentence of Ref, 22
entails that this equality of the strong limits v(a) —« and

{—+  does not hold for the example W=Q7 of that Reference.

[A more general result of Hunziker? implies that s-1lim, .«
x T WTp =1 for that example if v(| x|) is square-integra-
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center-of-mass system, respectively. Now, the compactness
of K, makes it impossible for W, to obey (4.1) for all such g,
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This article gives a complete description of the scattering for the spin 1/2 Heisenberg ferromagnetic chain

in its ground state representation.

1. INTRODUCTION

The purpose of this article is to give a complete
description of the scattering for the spin-3 one-
dimensional Heisenberg chain with nearest neighbor
interactions, in its ground state representation,*~*

In Ref. 4, an explicit, complete eigenfunction expan-
sion based on Bethe’s solution' was obtained for the
ground state Hamiltonian. Here, we use this eigen-
function expansion to obtain explicit expressions for the
wave operators and S matrix,

The qualitative picture for the scattering is a
simple one. Recall that the ground state Hamiltonian
commutes with a spin wavenumber operator. The
Hamiltonian, restricted to its N-spin wave sector, is
unitarily equivalent in a natural way to a second
differencelike operator - A, acting in an [*-space,
Within the N-spin wave subspace, the N spin waves
can combine to form bound state complexes. The
manner in which they combine, e.g., », unbound
spin waves, n, two-spin wave complexes, etc., with
%;jn;=N we refer to as an N-binding. The scattering
therefore involves channels. However, we show that no
inelastic processes occur, i.e., the binding is pre-
served in a scattering process, a result which seems
to have been known already for the anisotropic ferro-
magnetic chain® and the one-dimensional N-body
problem with repulsive or attractive 6-function
interaction.® The S matrix, restricted to a particular
N-binding in the appropriate (momentum) representa-
tion, is thus multiplication by a phase function of
modulus one, which we compute explicitly for each
N-binding.

The form of this phase can be described pictorially
as follows: At t =0, imagine » nonoverlapping wave-
packets on a line with sharply peaked velocities.

As t -+, and depending on the relative velocities

of the packets, some of the packets will necessarily
penetrate each other. The corresponding wave opera-
tor will then be a product of phase factors, one for

each penetration. Note that for unequal velocities, two
wavepackets penetrate each other, either for ¢ — +

or for / -~ -, The S matrix itself will also be a product

DResearch supported in part by NSF Grant No. MCS-76-05857.
PResearch supported in part hy NSF Grant No. MCS-74-07313-
A02.
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of such factors. For the spin wave model the velocities
of the complex packets are in fact their group velocities,

In Sec. 2 we review the ground state representation,
set up notation and define the wave operators and
S matrix. The wave operators and S matrix are calcu-
lated in Sec. III. An appendix is included in which a
particular limit needed in Sec. III is computed.

2. NOTATION AND DEFINITION OF THE
WAVE OPERATORS

Wherever possible we follow the notation of Refs. 3,
4, Let 2Y={m=(m,, Mg, «..,my) EZ¥ |m, <my<-+-my}.
Then the generalized eigenfunctions of — A acting in
2(Z") are described as follows, Let B=(n,, 75, «+.,%y)
with #,> 0 and ¥ ju; =N be an N-binding; »; is the
number of j-spin wave bound state complexes. Partition
{1,...,N}into a disjoint set of intervals [, =N,
+1,..., N, +j}with N, =S in, + (k1)) for &
=1,...,n; j=1,...,N. Let S, be the permutation
group of {1,...,N} and let P;={P =S| P(N;, +1)
<P(N,, +2)<--+<P(N,+j) for each jk}. Setz=(z, z,,
ey 2y ECY, 232 (20, Ziay e e sy Zings Ba1s oo o93Nmy), 25, € C,
(the variables z, are suppressed if n;=0), and

z2Mmp zzl"‘Pu)Zz!”‘P(z)- s zyPN.

Let Fj:{zecl |jz -] +1l =1}, fB:{ZB1ijGFJ’
0<arg(jz, —j+1)<arg(jz,, - j+1)<2mif k<k'h

The variable z , parametrizes the momentum of the jkth
complex 1< k<n, i.e., the kth complex consisting

of j bound spin waves. Define the fractional linear

transformation
(I+1)z-1 L~
Hz)= c =7 2.1
tz) lz-1+1" ¢ 1 2.1)
and
2,2, -2z, +1
exp(=iop)(e)= T ( —1—-#—) (2.2)
pl=igp) iiwith z,;2,=-2z,+]1
for N> 2. For z,, {,(z,, m) is a generalized eigen-
function for —a,, with S
= 2 z™Pexp(-ipp), 2,51 2.3)
Va2, m)_PEFsz exp(-ipp), Zz= 1
and it is understood that zy_ v =Hz,) 0= 1<,
© 1978 American Institute of Physics 1699



The corresponding eigenvalue is given by

N i s 2
EB(ZB)Z—; Zf ———‘"——“](Z ik :2)4_ iy

; z,€T,.
k=1 Z(Jij 8 8

2.4)

{Equivalently, in a notation closer to that of Bethe,!®

=2[1- 3z, +2,™)]

4 2.4
with z,=¢", In general, the ks are complex. } The
associated Plancherel measure 15(z4)dz, on T is

given by

N 41 i
HB(Za):?’el;[l[(_ 1)' [(].-1)1]2—-‘““]

27 jea-j+1

(2.5)

The y,’s, in association with these measures, provide
a complete orthogonal eigenfunction expansion for

_AN‘3'4

Let U,: 2(ZY) — L*(fy, u,) be defined by
f— <¢B(Ze); f>,z(z1v)

and let E; be the projection onto the range of U;'.
(The E;’s are mutually orthogonal for distinct 8's;
they are complete in the sense that their sum is the
identity.) Set E;=E ..., 1), where (0,0,...,1)

is a j-tuple.

Define the p-channel Hilbert space #§ to be the
range of U°' L? (FB, pg) —®,8NE 12(2)
defined byf J93@)f(Z5) 1 (25) dzg with =08y (2 ;)
and wj(z]k)_w(o o)y 0,0,...,1) a j-tuple. Thus
U3: H9~ L¥(L, 1) is unitary. Define the channel
Hamlltoman — A acting in A3 by

Jal N
- Af= _;z;l‘Er=1"j'>®1‘k=“®a,® 100 Q1L im0 s

(2.6)
Let J,: /g — I*(Z") be defined by
JBf(ml, Moyyaosy mN) = P({Epsf(m};u), mP(z), s ’mP(N'))'
2.7)
Finally, define the channel wave operators
W, (8): Hg— LHZY)
W, (8)=s-lim exp(= itA)J; exp(itag) (2.8)
e
and the S matrix
Sus=Wila)W_(B). (2.9)

Remark; Our motivation for the definition (2.8) is
the analogy with Schrodinger operators in one dimen-
sion with Bose statistics. For example, suppose in
the Schrodinger case an N-body state evolves asympto-
tically into a 8-channel state,

exp(— ##H)Y(x,, .o, xy) — (NI )-l/zg, Pexp(- itHY)

X (X1, 00 ey Xy)
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with P a permutation operator. Note that the rhs of
this expression must be symmetric, hence the sym-
metrizing operation. The factor (N!)"'/2 is the correct
one since the individual terms in the sum are asym-
totically mutually orthogonal. This suggests defining
the wave operators W,(8)= (N!)*/2s-lim ¢*¥#3 P
xexp(—itHg). If we regard the wave operators as
acting into LZ(RN) (RY={x€R"|x, <--+<x,}) instead
of L*(R¥), we obtain

W, (B) = s-lim exp(itH)2i pPexp(- itHp),

the analog of (2. 8).

3. THE SCATTERING MATRIX AND WAVE
OPERATORS

Recall the definition of the basic phase factors
expl—i9, ;)= (2,2, - 2z, + 1)/(z,2;-2z;+1) (Ref. 4,
Sec, 2). In terms of these factors, we define the phase
factor

exp(=1i9¢ 4 ;. )(Z)

Pz M (2p) = 28 (2,,,,) +1

= 11 (- - , (3.1)
é):’z’g;( [l(zjk)tl (Zj,k,)—Z[l(zjk)+1 >
where z, km_{j‘”‘( ) for 1= m =j, Since ¢'(z,,)

[t.l-l l( )J

for z, < 1“3, it follows that

exp(- EPN o my Ny, o )= eXp(WNjkw-mu. N

Aj'kl‘fjl -m’+1)
and hence that exp(— 19 i, ) indeed has unit modulus.
We write jk<j'k’ if j<j or j=j but k<k’. The main
results are the following theorem and corollary.

Theovem 1: The wave operators satisfy W, (B)

= E,W,(B). The operators W, (p)=UW ABUY ol :
Lz(fﬁ, 1) = L2(L;, 11,) are mu1t1p11cat10n operators
with multiplication functions given a.e. respectively
by

1 explio, i),
JR G R
VJ)z(uj’k’

o expl@ ),

JRS G R
VinrY gt

with

v, L~ T\ 2¢g
J 92 4y

(3.2)

Remark: The quantity v,, is the group velocity of
the jkth complex, i.e., the derivative of the energy
with respect to the momentum « ,, with exp(ix ;) =jz,
—j+1, Thus the wave operators are simply products
of phase factors, one factor for each pair of complexes
which penetrate each other in the evolution / —= or

[ =,

From Theorem 1, the mutual orthogonality of the
projections E, * and the definition of the S matrix, we
have the corollary:
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Corollary 1: The S matrix satisfies S, =0 for a #4.
For a=B8,,=US,US s LA(Ty, ug)— LAT,, 1) is multi-
plication a.e. by

M exp(-ig., . IT  exp(i TR
o S0y, ) T exey, )
"j)?"j'k’ ij<"j'k'

Proof of Theorem 1: The proof that W,(8)=E;W,(8)
is essentially the same as that used to establish
orthogonality of the eigenfunction expansion in Ref: 4;
see particularly Lemmas 3.1, 3, 3.1.4. We need to
show that, for a8, E,W,(8)=0. Let f€ L3({,, 1,),
g€ L3I, pg) be C* functions with f having support A
away from the analytic sets of codimension one in I'
corresponding to the singularities of the phase factors
exp(-1¢;,) in ¢,, and, in addition, both f, g having
support away from the hypersurfaces z,=1in I, I,
respectively, for each jk. Such f’s and g’s are dense
in their respective Hilbert spaces, and it suffices to
show that

(Udf, w(BUT g =lim AY(f, g)=0, (3.3)
where
AUf, 9=, 2 [T @T, (2, m) iz, m)g(z,)

x explitle,(z0) - €5(24) [} 1 o (24 114 (2,) d2), d2Zg. (3.4)
Now

Jyg= ,,GE,,B z?
again with

ZNjk*i-l = tt(zjlz)s 0s1<y,
and as a distribution,

2 F,(2", m)y,(z,, m)

m= 2V
=2 il z! Z “e
npezpa {X(zf"lmzo‘l (1>)X(ZP“(1)Zp-lmzo-lu)za'l(z))
Ep,

=1 >t
XX (Z 11y * " Zp-ty-1)2 Q-1 (1) * * 2@l (Na1y)

X6(Z{-+ -2y 2,7 - zy) expl- i@ p(zs)], (3.5)

where z] is parametrized by the binding variables of
a, the bar denotes complex conjugation, and

_ 1. -2y
= - -t =5
x@=lim - 1+9)7, o) =gr limg—u—r

(3.6)

in the sense of distributions. Thus Eq. (3.4) can be
written symbolically as

AN, g)=21 21 [T ([Txpo)og exp(-ig )
eEry

X explitle o — €)1 o 1hp 2,24
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(cf. Ref, 4, Eq. 3.1.4). In the proof of Lemma 3.1.4
of Ref. 4 the individual terms on the rhs of Eq. (3.7)
were shown to vanish in the limit / —+ + « by a Riemann
Lebesgue argument. Thus lim,_, AJ(f, g)=0 and the
first part of Theorem 1 follows.

Proceeding to the computation of W ,(8), we let g
be as above. Then

w.(B)g (z,)
=lim 2

(T 19(z’
fm 2 jrs%(zs, m)Jys(z;, m)

x explitley (zy) - e5(28) ) 1y (25) 2

=27 2 expleign)@)lim [ (x(z '
=27, & exp(- 10p)Z ) 1im f5 (KZ s 701

ZI . 1 )

Xeoow . Z
x( QL Qlev-1y

z veeZ
Pty Ph(N-1)

X8(Z, " " 7y 2r - 2y) explitles(25) — €5(z) ]}

X g(28) g (2h) dz’ 5. (3.8)
We consider the individual terms, labeled by P, @,
on the rhs of Eq. (3.8). We say that @ fills its com-
plexes successively if Q'(i +1)=@"!(;) +1 for each {
if @"'({}#N,, +;j for some jk, Now if P£Q or P=Q
but @ does not fill its complexes successively, then,
for almost every z,. at most » ~1 of the x or &
factors are simultaneously singular (x or & is singular
when its argument is one) as z} ranges over the support
of g. Here, 7 is the number of complexes of the binding
B. For such terms, one makes a change of variable,
treating e,(z;) — ¢4(z3) as an independent variable. One
then performs the integration with respect to the re-
maining variables to get an L' function of e4(z;) - €4(25),
which, on integration against exp {it[e;(z,) — €5(z5) 1},
vanishes for /—+ « by the Riemann—Lebesgue Lemma,
Further details of the argument are contained in the
text following Lemma (3.1.4) of Ref, 4.

Thus Eq. (3.8) is equal to
27 QﬁEp,ﬁ exp(- i9 Q) (zg) lim fp (X(Fg10 )2t )

X X FZ iyt 2ty @ ()"t 20 yery)
X0(Z, 2y 21" 2y) explitley(z,) —e(zh) ]}
X g(zg)uglzg)dzy, (8.9)

where /°; denotes the successive permutations of g
The limit in this expression is evaluated in the
appendix (Lemma A1) so that (3.9) is equal to

2@, 25, exp(=i0g) 11 9EWari(ym) ~Yari )
B

=P RS G R
= !k(l;'l’k' exp(iy,, ;' 18(25) ase., (3.10)
Y iRV j R
which concludes the proof of Theorem 1. »
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APPENDIX

The objective of this appendix is to compute the
limit encountered in Sec. 3. Let Q be a successive
permutation (see Sec, 3); then @ has the effect of
permuting the subintervals I, and so we write,
e.g. /'’ =Q'(jR). By jk<j'K we mean j<j’ or j=j
but #<k’, Let s be the union of all codimension one
hypersurfaces in T, of the form {25]2,,=1 for some
jk} and {z,]s,,(z,) =0}, where s ,(z,) is the rxy
Jacobian (r is the number of complexes),

vzs GB(ZB)
Vzﬂ 211
det . s (A1)
(VZB ij)h

with (v, Jk) denoting deletion of the row V, . i
Vz is the gradient with respect to z,.

Lemma A.1: Let @ be a successive permutation and
let g(z;) be a C” function with support bounded away
from the set s. Then

L*(ZB; @)

*Zﬂhmj {X (Zot1)26-1 (1))

t~t
ed =5 7 !
XX(Z @1y Z g1 212 @1 (1)3 g (2y) * **

= II._ - Z ! . ,-
XX(Fg1)y " * Bt wety 2Gal(ya1)” * * 29 (o)

XO(Zye e Ty 20+ 2Y) explitleg(z,) ~ €4z I}

X g (@)1 (2 dzi}
:jkpjlk'S(i(VQ-l(j,k,)—VQ-l(jk))) a.e., (A2)
where
p =iffRe=d 1 Pey(zy)
”= i 8z, (A3)

and in Eq, (A2) it is understood that

2y L= H2Y,) for 0= 1<,

ZN.+j-l:[1(ij); i

ik

The distributions x, & are defined in Eq. (3.6).

Pvoof: We congider only the case where @ is the
identity permutation; the case of an arbitrary permuta-
tion involves only an elementary permutation of indices.

The first observation is that, although there are N y
and 6 factors in the integrand, only » of these are sin-
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gular in the sense that their arguments can equal one.
The remaining factors have arguments of modulus
strictly greater than one, by the restriction on the
support of g, The (potentially) singular factors are the
ones with arguments

Zy 2y .y A1

.ot j
i ZY i for some jk.

The second observation is that the limit is zero if

g vanishes at z; for almost all z;. The proof of this
agsertion is a Riemann—Lebesgue argument; one
makes a change of variable with ¢,(z,) - ¢,(z}) regarded
as one of the independent variables. (The change of
variable is permitted by the restriction on supp g.) One
then does the integral with respect to the remaining
variables to get an L} function, which on integration
against exp{it[e;(z;) - €5(24)]} vanishes for f—z

(cf. Ref., 4, Lemma 3.1.4). If g(z,) #0, this observa-
tion allows one to replace g(z;) by g(zB)<p(z,g), with
@(z,)C~ equal to 1 at z, and having support ~ supp g,
and still obtain the same limit., (A particular ¢ will
be constructed later.) The observation can also be
applied to the nonsingular x factors and ugz. Thus
L,(z; 1) can be written

L,zs 1)

=27g (z4)

varjlkwx Byt Ey a2y

for any jk

§nn[&gﬂr((7-1)'y (;J?_Tlﬁ)]}

xlim I x(Z,---Z; 2{---2})
tozx Q=N g
i=N

XO(F, Ty 2le - 2l) explitley(zg) €52 ]}
x@(zg) 11 B (A4)
5k (e, -1t

where we have used Eq. (2.5).

The factors before the limit on the rhs of Eq. (A4)

can be simplified, On fﬁ, 2y 1 RN e is of unit
modulus,
ZNjkﬂJ e ZN;‘k*i-l = (721k -it 1) [(7 - l)zik —j +i1+1 }’
and
z ceezZy o=z, -1+1)"
N jp+t Npri=l ik
so that
Nijgri=l _ 1) i flz . L+
r x@peez; 2y _1 T I("&"'—') ’
i:N}ku
(A5)
Thus Eq. (A4) is equal to
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27
e ex! %! x
% I'] 1 i 1 7
f“i|=1 i<rx(x1' "x,) 6(v1---x:)
X explitle,(x) — e5(x') Joo (x’ )x AT (A6)

where, within the integral, we have made the substi-
tution of variables x=(x},...,%,) with x;=(jz,-j+1)
for i=k+737%, n,. Here e5(X)=F7.,€,(x,) with

(x _1)2 N J=1 s
ei(xi):_—fij, z:k+§nj, an
1

the energy of the jth complex parametrized by x,.

We now make the substitution of variable y, =x,x,---x,,

i=1,...,r to obtain

L,(25 1)

=g (z,)lim [2n/ 27i)']

Xfly“:l (yye °yr-1/y;° ° ‘y'r-l) Q, b’lx -1~ o)yi]-l

x8(y,/y,) explitlesy) - 0" ) o (v )dy’/ v,

=g (z)lim ooy

L (10100

x explitles(y) — €, (v]) —€,(¥3)- -« = €,(3,/y. ) T}

xww;,...,y;-x,y,»dyp--dy;-;), (A8)

where in the last step we have used the Riemann—
Lebesgue argument which effectively evaluates
V10 eVl (9]0 y,.0) @t y{se-p) =9;ee- 9, and we
have done the y/ integration, using the fact that

S 6(2)h(2)dz =in(1). (A9)

In Eq. (A8), €(y)=Z1ui,(0i/9,00), With yo=1,

We next consider just the y)_; integration, first
making yet another change of variable, while imposing
some conditions on ¢. Let u=¢(y,/v,.,)-¢€,(,/y].;)
te, 0,/ V) — € i/ v),). (The transformation v!_,
— i is locally 1—1 about y for almost all y and hence
Z,.) Assume ¢ is of the form @(y{--+y!_, ,)
=t0], ..o, vi2)s(hs, vi) with ¢ as yet arbitrary but
s given implicitly below (y, is treated as constant). We
have that
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(yr-l 1- V)yr-l) -

v ,
=(>’y,.1 +u —%';L‘(yi-z, Y1) 1+ 00, i, w)]  (A10)

with ¥=0(u) uniformly in y, so that in terms of this
new variable

L,(z4 1)

=(2%%;L2rhmf'n [yi - =0)y,I*M(t)

twien’ i=l

Xexp{it[el(yl) t- 'Er-l(yr-l/yr-z) -6) -

- 6,_2()’:-2/31;..3) - er.l(yr-l/y:--z)]}t(y:) IR _V:--E)

X dy{e e dy g, (A11)
where
M(t)
f due'“‘[1+v(y Yoz )]SWiz, ¥io1)
=lin Ou/2y, Wl VIV T 00V 2 s v,0)]

due'®™
au 8y,_1)(v,-2, yr-l)]

aLl mecm

X[au/avr-l (yj-Z’ yr-l)[l +v(0 vr-Z’ “)3(37-2’ \7,_,1)]]
©Or/2y7.) vy ¥ro1)

(A12)

Now we simply define s in such a manner that the
jquantity within the large brackets in the integrand of
(Al) is in fact only a C~ function of p which is identical-
ly one in a neighborhood of u=0. [Note s(y,.,, v,.,}=1].
Denote this function w{y), Then it is straightforward to
show by complex integration that

M(t) =1im

Y40

et w(u)dy
(TR (u 3’;—-1)(37£-2: 3’7-1)

xf(
=279(ity, ., (/3% ) (¥]ezs ¥,)) T O/ 1)

=2mis{tlv, - v, N +0(1/8), {A13)

for y!_, near vy,_, and the term O(1/¢) independent of
Y,.2. Here,

u,:iLﬁL(%‘), 1=1,2,. (A14)

Now note that the integral (Al1) is precisely of the
form (A8) with » diminished by one [and M(t) indepen-
dent of y]_, for y._, near v,,]. Hence the argument may
be repeated for v/_,, v, etc., and we obtain
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L*(ZB) 1) =g(za) é‘lzs (;t(l/l - Vl-l))

= g(z,) Ejs(i(vl—l/‘)),, (A15)

Taking an arbitrary successive permutation, and

writing v, in terms of z,, we obtain the lemma, ]
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The problem of defining conditional probabilities and the notion of statistical independence in quantum
theory is analyzed. It is shown that (unlike in classical probability theory) the conditional probabilities of
a given set of events can be determined only if the sequence of all the experiments performed on the
system is also specified. Such a specification is necessary also for the concept of statistical independence to

become physically meaningful.

Recent investigations!~® have shown that the statistics
of successive observations in quantum theory should be
studied in a framework of quantum probability theory.
In the present investigation we shall examine the prob-
lem of defining conditional probabilities, and also the
related notion of statistical independence for experi-
ments performed on a quantum system. First, we de-
fine operationally meaningful joint—and conditional
probabilities of a set of events when a given sequence of
experiments in performed on the system. We shall de-
monstrate that these probabilities depend not only on the
set of events consideved, but also on the sequence of
expeviments pevformed on the system. This, in fact, is
the essential physical content of the various nonclassi-
cal properties of the quantum theoretic probabilities,
which are sometimes collectively referred to as the
“quantum interference of probabilities.”?:*

We shall also show that an operationally meaningful
notion of statistical independence can be formulated for
a set of experiments, or the corresponding random
variables; however, such a notion cannot be defined just
for a given set of events alone, as is possible in classi-
cal probability theory. Once the notion of statistical
independence is clearly formulated, one can proceed
to a study of situations where there exists some kind
statistical dependence between the set of experiments
performed on the system. In order to illustrate this
point, we finally make a few remarks on quantum
Markov chains defined on a discrete value space.

1. PRELIMINARIES

Let (, 7, u) be a classical probability space.® Let
{4,,A,,..., A, B, B,,..., B, be a set of events. Then
the joint probability Pr{A,, A,,..., A } for the set of
events {A,} (1 €/ <n) to be observed, and the condi-
tional probability Pr{A,, 4,,..., 4,/B,,B,,..., B, | for
the set of events {A,} (1 <i <») to be observed, given
that the set of events {B,} (1 <y <m) are observed, are
defined by the following equations:

(1.1)

Pr{A,, A,,..., Ajb=wA,NA, N NAY,

Pr{Av Az; e A"/Bl, By .oty Bm}

=u(B,NB,N+++NB,NA M +NA)/ (B, +-+NB,).

(1.2)
It is clear that the joint probabilities (1. 1) and the con-
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ditional probabilities (1.2), depend only on the set of
events {4,, A,,..., A,, B,,..., B, considered. One
need not make any reference at all to the set of experi-
ments in which these events have been observed —or
equivalently, to the set of random variables that are
being considered. ®

In order to study the joint and conditional probabilities
in quantum theory, we shall make use of the framework
of quantum probability theory outlined in Ref. 2. In
quantum theory there is, corresponding to each event
that a particular outcome is observed in a given experi-
ment, an associated “measurement transformation” or
operation. The set of all operations constitutes the
event space, which has now a structure quite different
from that of a Boolean g-algebra. Here, we shall out-
line only some of the salient features of quantum prob-
ability theory (mainly to set up the notation), and refer
the reader to Ref. 2 for a detailed exposition.

Let V be the ordered Banach space (under the trace
norm) of all self-adjoint trace-class operators on a
Hilbert space 4. Then the set of all operations (/, is
the set of all positive, norm-nonincreasing linear
transformations on V. (J is partially ordered by the
relation

s &= &,(0) = &),

for all » € V*, () has a subset £ (consisting, in general,
of more than one element) of maximal elements, which
have the property

(1.3)

te L e=>Tr[tr)|=Tr[r] (1.4)

for all » < V*. In (J, the conjunction of two events &,
&, is given by

(Exn ED0) = E,(E,0D, (1.5)

for all » ¢ V; this corresponds to the event that both the
events £, and &, are observed in that order. If £, + £,
¢ () also, then we say that the events £, and &, are
mutually disjoint and define their disjunction &,V &,
by the relation

61\/ 62:51_,_(,.(2-

Given an event ¢ « (J, there are in general several
complementary evenls &< (), such that £v £z,
Hence, given any & € (), lheve exist seveval maximal
ervents £ T such that & < &,

(1.6)

By a quantum probability space we mean an ordered
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pair (0, 1) where the state u is a strongly continuous
linear mapping from () into [0, 1], which satisfies’

“(E):ly (1.7)
for all £ Z and
p(& A e)=u(&) (1.8)

for all £ T and £ €. In particular, there are states
{up} which can be specified by the density operators
{p}, i.e., peV* and Trp=1), in the following way:

1, (&) = Tr[E(p) ], (1.9)
for all £« (.

An experiment X whose outcomes all lie in the value
space R (in general, a complete separable metric
space) is specified by the corresponding random vari-
able (which shall also be denoted as X), which is a o-
additive map from A(R) into (J, such that X(R)e Z. X(E)
corresponds to the event that the outcome of the experi-
ment X is found to lie in the Borel set E € 8(R); K(X(E))
will be the probability for this event to be observed
when the experiment X is performed on a system in
state u.

In this paper we shall employ the Heinsenberg picture
of evolution—i,e., under a time evolution only the ran-
dom variables are assumed to evolve with time. Hence,
if we say that an experiment X, was conducted at time
¢, and an experiment X, at time ¢, (with ¢, </,), it is to
be understood that the time evolution up to the time /;
is already taken into account in the specification of the
random variable X,. Then u(X,(E,) A X,(E,)) will be the
probability for the event that the experiment X, (at /,)
yields a value in E, and the next experiment X, (at /,)
yvields a value in E, when a system in state y is sub-
jected to the sequence of experiments {X,, X,}.

We have so far summarized only the formal structure
of quantum probability theory. There still remains the
guestion as to what meaning is to be attached to state-
ments such as “the probability for observing the
event... is... .” This question is definitely of great
importance as it could possibly be said® !° That the
'differences between the various interpretations of quan-
tum theory essentially arise out of the differences in
the interpretations of the probabilities!! predicted by
the theory. For the purposes of the present paper we
shall adopt the following “relative frequency” interpre-
tation of the probabilities such as p(X(E,) A X,(E)A + -
ANXAE):

Let

nx X {XI(E ) X (E ) ’ Xr(Er)}

1

be the nutmber of systems for which the outcome of the
experiment X, is found to be in E; for all 1 <i <, when
N systems all in state 1, are separately subjected to
the sequence of experiments X;, X,, ...X,. Then we
shall make the following identification:

BXAEDA X AEHN - AXLE))
=limny N, AX(E), X(E,), ..., XAE /N
(1. 10)
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It should, of course, be noted that the identification
of probabilities with relative frequencies gives rise to
several difficulties (both in the definition and measure-
ment of probabilities), which have not been completely
resolved even in the context of classical probability
theory. '* However, for the purposes of the present
paper, the identification (1. 10) is sufficient to provide
operationally meaningful definitions of conditional prob-
abilities and the notion of statistical independence.

2. CONDITIONAL PROBABILITIES

We shall consider the following general situation
where a sequence of experiments {Xl, X, ..., X,}are
performed on a system in state y at times ¢, </,
<...<{ . For simplicity, we shall assume that all
these experiments have the same value space R and
write

X/(R)=¢, €3, (2.1)
i 4{i, iy..., [,  is a subset of {1,2,..., »}, with ele-
ments all distinct, ' and {E, , E, i+ B T BR), we

shall denote by Pry o, . XT{XH(E“), X ,(E),.

X, (E;)} the joint probability that the outcome of the
experunent X, 1is found to lie in E; (1 < @ <k}, when the
system is sub]ected to the sequence of experiments

{X,, X,,...,X,}. This will be operationally identified
with
1111_2”)( Xgy e X, {Xil(El)’Xt (E), '*Xik(Eik)}/N7
(2.2)

where nf: ¥y |y AX, (E, X (E ), X, (Eik)} is the
number of systems for Wthh the outcome of X, is
found to lie in E;, (¢=1,2, , k), when a total of N
systems, all in state u, are sub]ected to the sequence
of experiments {X,, X,,..., X,}. It is clear that
”xlez X, {x, (E ) X; (E ) . X, (E, ), is the same
as the number of systems for which the outcome of X,
is found to lie in E; (a=1,2, , #), and the outcome
of the rest of the experlments {4 B} lies anywhere in R,

for each Be{l1,2,..., ¥\ i, ..., i,k

If 7 is the permutation of the indices {i,, iy, ..., i,/
such that 7/, <wi, <-+- <wi,, and if we write

Tig=py (1=a<k), (2.3)

then, from our remarks above and the basic prescrip-
tions of quantum probability theory (outlined at the end
of Sec. 1), we can conclude that the limit (2.2) is
nothing but

(X (R) ~

X,(R) N e e A X, 4(R) A X, (E, ) A X, G(R)

X, (R A X, (B, )A X, (RYA <= AX(R)): (2.4)

By using (2.1) and (1.8), we obtain from (2.2), (2.4) the
equation

Pry x, .. .x, {Xil(Eil),Xie(Eiz),...

=ulE, A g, N XPI(EPL) A&yt

- A A
/ Epl-l

(2.5)

N Ebb_lv/\\ Xf’b(El’/z))’

where, as we noted earlier, p,=ni, (1 <a<k)and 7 is
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the permutation of the set of indices {il, ees ,z‘k} such
that i, <mi, <<+* <mi,.

We now proceed to the operational definition of condi-
tional probabilities. Let {i}, iyy2 vy tps Y1p-++5 ¥i} D€ @
subset of {1,2,..., 7} with elements all distinct.*® We
shall denote by

Prxl,xz, X { (E{ 7 (Eyl )

the conditional probability that the outcome of X, is
found to lie in E; (1 <@ <k), given that the outcome of
X,, is found to lie in E,, (1< B<]), when the system in
state u is subjected to a sequence of experiments

{x 1» X5y . .5 X,}. This shall be operationally identified
with
Lm([nfly,, ..., x 1%

’ Xik(Eik)/Xyl(Eyl), .o

(B, X, (B ), X, (B, X (B,

e, Xik(E,.k)}/N]

x (15, x A% (B ) oo, X (B DYNTY). (2.6)
Hence we conclude that
Pry xa... x X (Ei)yeers X\ (ED/X, (B, .0, X, (E, )}
Pry x,...x X (i) ”,Xik(Eik),X,l(E,l),...,X,I(E,l)}
Pry ... 5 Xn By )s oo X, (B )} 2.7)

where the numerator and the denominator on the right-
hand side can be obtained by a relation like {2.5). From
(2.5) we can also conclude that

Pry . x 1% (E), X, (E,), ..., X, (B, )}
=Pry X (B, ), KBy, .o, X, (B, X, (R), ..., X, (R}
=Pry xp e x A K(By)ses Xy (B ), X (B ),y X, (B
+PTy x, x4 % E.,l) o X, (B, ), X (ED, ., X (B
> Py, y,. ... X{ E,), X, (E, ), ..., X, (E, ), X, (E;),
XX (B e, Xik(Eik)}, (2.8)
where E;_ is the unique complement of E,  in A(R) and

we have Jsed the g-additivity of the random variables
X,,. From (2.8), we note first that the numerator in
(2.7) vanishes when the denominator does, and then we
take the conditional probability (2.7) to be zero. We

have therefore the relation

0<Pry x, __,Xr{X (Ei)s Xi(E), .oy X (E /X,

, X,,Z(E,‘)}< 1, (2.9)

In order to illustrate the essential nonclassical fea-
tures of these conditional probabilities, we first con-
sider the situation where just two experiments {X,, X,}
are performed at times £,, {,, with ¢, </,. We have then
the following joint and conditional probabilities:

PrXI,XZ{Xl(El), XZ(EZ)}: U,(XI(E!) A X_g(EZ)); (2, 10a)

Pry, {X\(E)}= n(X,(E); (2. 10b)

PrXI,XZ{Xz(Ez)}: u(SM Xz(Eg)); (2. IOC)
U(X (E)AX(E)) .

Pry ¢ {X,(E)/X,(E,)}= “(X( “Xz(Ez» . (2.11b)

plE A Xz(Ez))
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It is important to realize that

I-L(Xz(Ez))

In fact the quantity on the right-hand side is not con-
strained to be less than unity and has no operational
interpretation whatsoever as a probability. In the same
way, we see from Eq. (2.10c) that in general

Pry x [X(E )} n(X,(E,)).

However, the quantity on the rhs of (2.12b) has an
operational interpretation as the probability

Pr ,1X,(E,)} for the outcome of X, to in E, when X, is
the first experiment conducted on the system in state p.
Therefore, the inequality (2. 12b) (which has sometimes
been considered as an expression of a certain “quantum
interference of probabilities”?"*) is equivalent to the
following relation:

)p# PrXZ{Xz(Ez)}-

This brings us to the central point that we want to
emphasize which is that, in quantum theory, fov any
given Set of events, opervationally meaningful joinl and
conditional probabilities can be (defined and) delevmined
in general, only if the sequence of expeviments per-
formed on the system is also specified, For example,
the probabilities (2.10¢) and (2. 11b) depend not only on
X (E,) and X,(E,) (the events considered), but also on
£,. We have already noted in Sec. 1 that for any given
event &, [X,(E,) say]|, the maximal element ¢, € T such
that £, > £, is not unique, but depends on the experiment
(X,) we have chosen to perform. This is because there
are, in general several maximal elements &, € Z which
satisfy &, > &), and the maximal element X,(R) can be
any one of them.

Prxl.x 1X(E (E)}# . (2.12a)

(2.12b)

PrXI,XZ{Xz(Ez (2. 13)

In the general case we see from (2.5) and (2.7) that

,X,,{Xil(Eil), Xi (E )1-- *> X; (E )}:

r
3 X1, X3, PAE i\ iy

PrXI,Xz,...,XT{Xil(Eil)) cees Xik(Eik)/X’l(E"x)’ e X

Y

(B}
depend in general also on{¢,, &,,..., ¢,.,}, From Eq.
(1.8), we can easily show that probabdilities involving a
given Set of events depend only on those experimenis
which ave pevformed priov o the time al which lhe las!
even! (among the sel of evenls consideved) is observed.
For example, in Eq. (2.5), since p, is the largest of

{i)s fay- v, i}, We have

Pry x, .o X)X (B, )]
X, (B, )b

:Prxl,Xz,...,x,,k{Xil(Eel):---: iEi, (2.14)

In particular, the probabilities (2.10) and (2.11) would
remain the same even in the case when arbitrary ex-
periments X;, X,,..., X,, etc., are performed after
X, X,.

rs

Equations (2.5), (2.7) are extremely general and can
be used to determine operationally meaningful joint—and
conditional probabilities for any set of events when an
arbitrary sequence of measurements is performed on
the quantum system. If, in particular, the times /,

(1< as<k)in (2.7 are all greater (lesser)-than by
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(1= B<), then we have the case of prediction (retro-
diction. Equation (2.7) can also be used in the general
case when

(i) some of the {t,.} lie between different L

3
(ii) the set {i}, iy, . vy ip Y1 Yor-++, ¥} 1S @ proper
subset of {1,2,..., }~—i.e., the events considered
refer only to a proper subset of the set of all experi-
ments performed.

We shall now briefly review some of the earlier in-
vestigations on conditional probabilities in quantum
theory. At the outset, we may note that (barring Refs.
1,2) all such studies have been confined to a class of
events which correspond to the so called “ideal mea-
surements.” An ideal measurement event may be rep-
resented as an operation & of the form

(Cu_—,PnP, (2 15)

for all e V, where P is a prejection operator on #.
As we have already mentioned, the nonclassical fea-
tures of the quantum conditional probabilities for ideal
measurement events were first noted by de Broglie.?
Later, Watanabe'* emphasized the fact that the purely
retrodictive conditional probabilities (for which such
nonclassical features were first discovered) were also
physically very meaningful. For an elegent calculation
of the purely retrodictive probability given by (2. 11b)
when only ideal measurements are considered, the
reader is referred to the recent book of d’Espagnat, °
Conditional probabilities for ideal measurement events
which are not restricted to be either purely predictive
or purely retrodictive were first considered by Ahara-
nov, Bergman, and Lebowitz.'® The general case re-
ferred to as (i) above, has been discussed in detail by
Houtappel, Van Dam, and Wigner,

Apart from the restrictions already mentioned, most
of the above investigations also suffer from the follow-
ing limitation: They also assume that the operation &
complementary to the operation ¢ of Eq. (2,15) is
always given by the relation

Fv=(1-Pv(1-P), (2.16)

for all v € V, where 1 is the identity operator on /.
This is completely justified as long as the operation &
corresponds to an event of the following form: “In an
experiment to measure the observable represented (in
the conventional framework of quantum theory) by the
self -adjoint operator

A=x)P+2(1-P), (2.17)

the outcome was found to be A,.” However, we can also
consider the operation £ to be associated with the event
“in a measurement of the observable represented by the
self-adjoint operator

B= P + 1@ + U4R, (2.18)

(where the projection operators @, R are such that
@ +R=1-P), the outcome was found to be y,.” Then
the complementary event £ is given by the relation

Er=QvQ +RuR, (2.19)

which is completely different from (2, 16). Therefore,
it should be noted that, even when we vestvict ouvselves
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lo ideal measurvemenl evenls [such as in Eq. (2.13)]
only, the complementary event is not unique, and de-
pends on the pariliculav expeviment {(Such as measuve -
ment of A ov B above) pevformed on the syslem.

We shall finally make a few remarks on the notion
of conditional expectations in quantum theory. The
notion of conditioning has been discussed in the lattice
theoretical approach to quantum logic by Pool.!® There
have also been several investigations'® on the definition
of conditional expectations on Von Neumann algebras.
However, as we have emphasized elsewhere,? both
these approaches are not well-suited for a discussion
of joint and conditional probabilities in quantum theory
because, in these approaches, the mathematical
characterization of an observable does not include a
specification of the associated measurement
transformations.

Recently Cycoon and Hellwig?’ have introduced a
notion of “generalized conditional (GC) expectations” in
the framework of quantum probability theory. They have
also exhibited conditions under which the GC expectation
corresponding to a given random variable X coincides
with the dual mapping X*: A(R) —~ L{V', V"), where V"’
is the dual of V, and, for each E ¢ S(R), X*(E) is the
transposed operator of X(E). However, the relation
between these GC expectations (which have been intro-
duced based on an anology with certain relations involv-
ing conditional expectations in classical probability
theory) and the conditional probabilities is not trans-
parent as in classical probability theory.

3. STATISTICAL INDEPENDENCE

The concept of statistical independence occupies a
central position in probability theory. In fact, as
Kolmogorov?! has pointed out, “Historically, the inde-
pendence of experiments and random variables repre-
sents the very mathematical concept that has given the
theory of probability its peculiar stamp.” In classical
theory the notion of statistical independence can be
defined for a given set of events as well as for a given
set of experiments.® We shall now show that in quantum
theory the notion of statistical independence can be
defined in an operationally meaningful way only for sets
of experiments {random variables), and that too only
when the sequence of all the experiments performad
on the system is also specified.

Let us again consider the general situation where a
system in state u is subjected to a sequence of experi-
ments {X,, X,,..., X,}. It is operationally meaningful
to say that the set of random variables

{Xix’ Xieses Xi)} are statistical independent whenever
},ifn nE x;{Xi](Eil)’ Xiz(b‘n)’ ) Xik(Eu,)} /N

(3.1)

for all E; < /(R). We are thus led to the following
definition:
A set of random variables {Xi,’ Xipperes Xik‘,- is said

to be statistically independent in the state i when a
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sequence of experiments {X,, X,y ..., X,} are per-

formed, iff
Pry, x,, ...,X{Xil(Eil)’ Xig(Eiz)’ tees Xik(Eik)}

r

:le[Prxl,xz,...,x,{Xia(Eia)H, (3.2)

for all E; < A(R) (1<a <k).

If in (3.2) we take some of the E; to be R itself and
use (2.5), we arrive at the result that any subset of a
set of statistically independent random variables is also
statistically independent, in the same state when the
same sequence of experiments are considered.

From the above result and our definition (2.7) of
conditional probabilities, we can establish the following
conclusion (valid in classical theory also!®):

A set of random variables {X{I, Xigrones Xik} is
satistically independent iff

Prxl,xz,...,x,{Xa,(Et)/Xal(Ex)’ X (Es)yon, X

2

= Prxl,xz,...,x,{Xa,(Ez)}’

forall E e A(R) (1<«
q,} of the set of indices {i,, i,..

<]), for all subsets {q,, q2,...,
., i,y forall 1<k,

We shall now illustrate the above definition of statis-
tical independence when just two experiments X,, X,
are performed at /,, ¢, with /; <{,. For simplicity, we
assume that the value space is the set {0, 1}, and we
write

x;({1h=¢, (3.4a)
x({oh=¢,, (3. 4b)
Xi({o’l]f):fi:&"'gn (3-40)

for i=1,2. Then X,, X, are statistically independent in
state u iff the following conditions are satisfied:

u(E A ED=wlEDulE A L), (3.5a)
wlE n E)=wEDulE A &), (3.5b)
WE N E)= wEDulE, A E), (3. 5¢)
w(E A E) = wEDulE, A &) (3. 5d)

However, it is sufficient to demand say

w(En &)= ﬂ(gl) ulE, A &),

as (3.5b), (3.5c), and (3. 5d) follow from (3.5a) once
we use (3.4) and (1.8).

It should be remarked that unlike (3. 5a), the equation
IJ-(CCl A (Cz) = “(51) H(g.’)

does nol in geneval have any opevalional meaning of
independence in quanlum theory (unless, of course,
£,=1, where [ is the identity operation). From (3. 5a) it
is also clear that even for just fwo events, the concept
of slalislical independence cannol be defined in quantum
theory withou! making veference to the sequence of
experiments pevformed.

The operational definition of conditional probabilities
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and the concept of statistical independence that we have
outlined is but the first step in the general analysis of
statistical relations among a series of experiments
performed on a quantum system. However, it is also an
essential step before analyzing the various forms of
statistical dependence that may exist between successive

experiments. For example, we may consider a simple
generalization of (3. 3) which leads us to the following

notion of a Markov chain.

A quantum Markov chain on a discrete value (state)
space is a sequence {Xl, Xoyeesy X,y oo +} of random
variables defined on the value space {1,2,..., n}, which
satisfy

Prxl,xz,,”YXW...{X,({a,})/Xl({al}), Xz({o’z}’); vy Xy-l({’yr.l}')}

=Pry s, ...« o h/X, (oD (3.6)
for all @, {1,2,...,n} (1<k<v), forall v>2
If we write
x,{1,2,...,nP=¢, 3.7

for all » = 1, then the singlet probabilities p,(«,) and the
transition probabilities p, («,, @,) are given by the
relations

[)r(ar):Per,Xz,..‘,Xr,"'{Xr({(yr})}! (3-8)
pq,r(aq,ar):PrXI,Xz,...{Xr({ar})/Xa({aq})}
_ PrXI,Xz,-"b{{q({aa})’ X‘r({ar})} (3‘9)
Pry, x,....1%,(a N}
The following relations can be easily deduced:
/),(a,):aZ:l,h“(aq,a,)/)q(afq), (3.10)
Zf /)q,r(aq’ (y'r)pT,s(ari aq) :/)r:,s(arn Kys)’ (3' 11)

)

for all distinct ¢, +, s+ 1and a,, «o,, «, e{1,2,...,n].
The relation (3.11) is the famous Smoluchowski —
Chapman—Kolmogorov (SCK) relation which is of funda-
mental importance in the theory of classical Markov
chains also. **

It is important to realize that the relations (3. 10) and
(3.11) hold only between the operationally meaningful
singlet and transition probabilities. If we had proceeded
just by analogy with classical probability theory, we
would be led to consider quantities like w, (a,, )
given by

Wo, @ 2 )= ulX (o DA X (o D)/ utx,(a,).

w,, s s meaningful as a transition probability of the
Markov chain® {X,,X,,..., X,, -} only when
qg=5~1=1.

(3.12)

In conclusion, we may note that our considerations
clearly show that in general the various joint and con-
ditional probabilities in quantum theory, which refer to
situations where differen! sequences of experiments are
performed on the system, ave no! related to each other
as in classical probability theory. However, relations
such as (3.10), (3.11) illustrate also the following im-
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portant property of the quantum theoretic probabilities
[which can be easily established on the basis of Eq.
(2.5), (2.7)]: The vavious joint and conditional probabi-
lities, all of which refev to the same situation (i.e.,
the same sequence of expevimenis being pevformed on
the system), satisfy among themselves all the velations
of classical probability theory.

1E,B, Davies and J, T. Lewis, Comm, Math, Phys. 15, 305
(1969).

*M,D, Srinivas, J. Math, Phys, 16, 1672 (1975) {to be re-
printed in The Logical Algebraic Approach to Quantum Me-
chanics, Vol, II, edited by C.A., Hooker (Reidel, Dordrecht,
Holland, 1977),

M, D, Srinivas, “Quantum Counting Processes,” J, Math.
Phys. 18, 2138 (1977).

4L. de Broglie, Review Scientifique, 259 (1948). See also the
discussion in the Appendix of L. de Broglie, Physics and
Microphysics (Hutchinson, London, 1955),

5A.N. Kolmogorov, Foundations of The Theovry of Probability
(Chelsea, New York, 1950),

fThese statements follow directly from the following features
of classical probability theory: (i) Given A< 7 there exists
a unique complementary event A€ ¥ such that AN A=§, AUA
=Q, (ii) For any Ac 7 we have u(@N A)=p(AN Q) =u(A).

"In Ref, 2 the property (L.8) was not used in defining a state,
but it was later imposed as a desirable requirement,

8K,R. Popper, in Quantum Theory and Reality, edited by M.,
Bunge (Springer, New York, 1967), pp. 7—44.

°L,E. Ballentine, Rev, Mod, Phys, 42, 358 (1970),

10M, Jammer, The Philosophy of Quantum Mechanics (Wiley,
New York, 1974), Chaps. 1, 10,

HMost of the “interpretations” of the probabilities, as pre-
dicted by quantum theory, are reviewed in Refs, 8—=10 and

1710 J. Math. Phys., Vol. 19, No. 8, August 1978

references cited therein, See also the following: R. Giles,
J. Math, Phys. 1, 2139 (1970); P, Benioff, Phys, Rev. D 17,
3603 (1973); T. Fine, in Logic and Probability in Quantum
Mechanics, edited by P. Suppes (Reidel, Dordrecht, 1975),
pp. 179—-95,

12gee, for example, T. Fine, Theories of Probability (Aca-
demic, New York, 1973), Chaps, III—V,

13Joint and conditional probabilities for two events referring
to the same random variable have no operational meaning
unless we consider situations where some experiments are
repeated (on the same system), However, we have fixed the
sequence of experiments that were conducted on the system
to be {X;, X,, ***, X,}. If we want to consider a situation
where some experiment is repeated, then we have a different
sequence of experiments, which can, of course, be handled
in the same manner,

145, Watanabe, Rev. Mod, Phys. 27, 179 (1955). See also 8.
Watanabe, Knowing and Guessing (Wiley, New York, 1969),
Chaps. 3, 7, and 9.

15B, d’Espagnat, Conceptual Foundations of Quantum Mechan-
ics (Benjamin, New York, 1976), 2nd ed,, pp. 149—56,

16y, Aharonov, P,G. Bergman, and J.L. Lebowitz, Phys,
134, B1410 (1964),

TR, M, F. Houtappel, H., Van Dam, and E, P, Wigner, Rev,
Mod, Phys., 37, 595 (1965),

185, C. T, Pool, Commun, Math, Phys. 9, 118 (1968).

135ee, for example, S. Gudder and J, P, Marchand, J, Math.
Phys, 13, 799 (1972) and references cited therein,

20M, Cycoon and K, E. Hellwig, J, Math, Phys, 18, 1154
(1977). The author is grateful to the referee for bringing this
paper to his attention,

IRef, 5, p. 8.

2Ref. 5, 8—12,

BW, Feller, An Introduction to Probability Theory and Its
Applications, Vol, I (Wiley, New York, 1950),

“The fact that quantities like «, ; do not satisfy the SCK rela-
tion was noted in Ref, 2 [cf, Eq. (5.18)],

M.D. Srinivas 1710



Entropy and phase transitions in partially ordered sets

Deepak Dhar

Downs Laboratory of Physics, California Institute of Technology, Pasadena, California 91125
(Received 16 January 1978)

We define the entropy function S(p) = lim, ,2n ~%ln N(n,p), where N(n,p) is the number of different
partial order relations definable over a set of n distinct objects, such that of the possible n(n —1)/2 pairs

of objects, a fraction p are comparable. Using rigorous upper and lower bounds for S(p), we show that
there exist real numbers p; and p,; .083 <p, < 1/4 and 3/8 <p, <48/49; such that S(p) has a constant
value (In2)/2 in the interval p, <p<p,; but is strictly less than (In2)/2 if p <.083 or if p>48/49. We
point out that the function S(p) may be considered to be the entropy function of an interacting “lattice gas”
with long-range three-body interaction, in which case, the lattice gas undergoes a first order phase
transition as a function of the “‘chemical activity” of the gas molecules, the value of the chemical activity

at the phase transition being 1. A variational calculation suggests that the system undergoes an infinite
number of first order phase transitions at larger values of the chemical activity. We conjecture that our

best lower bound to S(p) gives the exact value of S(p) for all p.

In this paper we discuss the asymptotic enumeration
of partial order relations defined over a set of » distinct
objects when a finite fraction p of the n(r-1)/2 pairs
are comparable,

Let N{n) be the total number of partial order relations
defined over n objects. It is easy to show that

Nl =274, (1)
Kleitman and Rothschild! have shown that
2
In Nz) <Z- In2 +An®/ 2In @)

for some finite constant A. Combining these two results
we see that

2
lim - 1n Nn)=%1n 2. (3)

i
We are here interested in a more detailed asymptotic
enumeration of partial order relations. For this purpose,
we define the function

S(e)® 1im 21 In Nin, p), @)

7 ©

where N(n, p) is the number of partial order relations on

n distinct objects such that pr{n-1)/2 of the n(n - 1)/2 pairs

are comparable. [We call a pair (a,b) comparable if
a>b or b>a.]If pn(r-1)/2 is not integral, we round it
off to the nearest integer. The difference is clearly
unimportant for large n. Clearly we have

5(0)=5(1) =0, (5)
and from (2)
S(p) < 3ln 2, (6)

Our first results about S(p) are given in Theorem 1,

Theorem 1: (i) S(p)/p is a monotonic nonincreasing
function of p,

(ii) S(p)/(1-p) is a monotonic nondecreasing function
of p.

Proof: (i) From any partial order relation on » objects,
we can generate a partial order relation on (z +¢) ob-
jects by introducing ¢ new elements, incomparable to
all of the » elements and to each other, We thus have
the trivial inequality
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N(n,p)SNét'Fe, ( )

nte)n+te-1)

pnn-1) )

The theorem follows if we take the logarithms of both
sides and the limit of # and ¢ going to infinity,

(ii) The proof is similar to that of (i). Add of a chain
of ¢ new elements {o the original set of n elements such
that any of the new € elements is less than any of the
original n elements. The density of comparable pairs
in this new set of (n +¢) elements is

., 2 n{n-1) ele~1) 3
= (n+e)(n+e—l)< 2 pFne g ) (®)

The result follows from the inequality
N +e, p')= Nin, p), ©)

by taking the logarithms of both sides and going to the
limit of large # ande, ®

We note that Theorem 1 implies that S(p) is a continu-
ous function of p, It is quite likely that the resulis of
this theorem can be made stronger, In particular, we
would like to prove that S(p) is a convex function of p,
At the present time, however, the convexity of S(p) is
an unproved conjecture, We now derive a lower bound
for S(p).

Theorem 2: Let f,, p be any positive real numbers
satisfying the following conditions:

() fi=0,
(i) 0<p <1,
(i) 22 /=1,
(iv) Zt: [f§2+2fifi+i 1-p)l=1~p,
Then t
$()> 202 f; fi)l=p Inp=- (1 ~p) In (L= p)],

Proof: We consider a set of n distinct elements where
n is very large, This may be divided into disjoint sub-
sets so that the ith subset contains nf; elements, (For
simplicity, we assume that »f; are all integers, This
is clearly inessential as we let » tend to infinity in the
end.) We now construct a partial order relation amongst
these objects as follows:
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1, Any element in the ith subset is greater than any
element in the jth subset if 7 >7 +1,

2. Elements belonging to the same subset are noncom-
parable,

3, In no case is an element in the (i +1)th subset greater
than an element in the ith subset.

Any relation which satisfies these conditions is a par-
tial order relation, To complete the construction, we
have to specify the relation between the n* (3, £, /;.,)
=N, (say) pairs of the type (a,b), where a and b belong
to the ith and (f +1)th subsets repectively for some i,
We arbitrarily set a> b for pN; of these pairs and « in-
comparable to b for the rest, The resulting relation has
a fraction p of all the pairs comparable,

Total no, of such relations:NICle < N, p).
Taking the logarithms and going to the limit of large #,
we get Theorem 2,

Covollary 2,1:1f ; <p <3, then S(p)=31n 2, ®
Proof: Choose

3 1/2 3 ) 1/2
f1:%+(1_6-22>, fo=13, f3= —(ﬁ ) o p=7

Then Theorem 2 gives us S(p)> 3 In 2,
Combined with Eq. (6), this proves the corollary, ®

Covollary 2.2: If p < +; then S(p)= 3[- 20In(2 p) - (1
-2p) In (1 - 2p)].

Proof: Put fi=fo= %, p=2p in Theorem 2, ®
4
Covollary 2,3:1f p \»% , then S(p)= 3 l-p)ln2.

FSE

Proof; This follows from Theorem 1 by putting S(3)
1
=31n2 &

We can determine better lower bounds for S(p) than
given by Corollary 2.3 by using Theorem 2 and varia-
tional calculus to choose f; so that the largest lower
bound is attained, Using Lagrange’s multipliers, it is
easy to show that the optional choice of {f;, p} =1/*, p*}
satisfies the conditions

=M, if f; >0,
(10)
=M, if f; =0,

p* and M are chosen so that the corresponding solution
{rr} satisties conditions (i)—(iv) of Theorem 2, This
determines p* uniquely for a given p, If however

—li(ll—n_p—ﬁil—lzz cos%}l, r=4,5,6""; (11)
then the corresponding solution {fr}, and hence p, is not
unique for a given value of p*, The graph of p*, as a
function of p, shows intervals of p for which the value
of p* is a constant. It is easy toverify that in each of
these intervals S*(p), our best lower bound to S(p), is a
linear function of p.

It is quite plausible that the optimal lower bound given
by Theorem 2 gives us the exact value of S{p). The only
partial order relations not counted in Theorem 2 are
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those containing at least one incomparable (e,b) such
that @ and b belong to the i{th and jth subsets respectively
withj>i +1, for some ¢,j. This however implies that
no element of the ( +1)th subset is simultaneously com-
parable to both @ and b; and the probability of such an
event tends to zero exponentially for large n. We con-
jecture that the best lower bound to S(p) given by Theo-
rem 2, coincides with the exact value of S(p) for all p.

We now obtain upper bounds for S(p), which are
stronger than (6) in some interval of p.

If p is very small, it is easy to see that
S(p) $pIn2 - plnp - (1 - p) In(l — p),

To prove this, we just observe that there are
nm/2C aye 2 Ways of choosing pa(n —1)/2 comparable
pairs out of #(z2-1)/2, and there are at most two possi-
bilities of ordering for each comparable pair, Taking
the logarithms and limit of large n gives us (12), In
particular, we note that (12) implies that

Sp)y<3ln 2 if p <, 083,

(12)

(13)

While (12) gives a fairly good upper bound if p is very
small, it is quite worthless if p is close to 1 and (1 - p)
is small. In this case a better upper bound is given by
the following theorem:

Theovem 3: S(p) < 41n 2 (1 -p)t/2,

Proof: We note that the maximum number of mutually
noncomparable objects in a partial order relation on »
objects with pr{n—1)/2 comparable pairs is less than
n(l - p)!’2+ 1= (say). Hence, by Dilworth’s theorem,*
we can choose # chains such that their union contains
all the »n elements,

Let the lengths of these chains be Iy, ls, ls.ovuoy Iy
in decreasing order of magnitude, Consider now any two
chains /th and jth, Let N;; be the number of different
ways we may assign a partial order relation on the
set formed by the union of these chains consistent with
their chain structure, Thenr we have

Ny i’[(li+lf)!/lillj!)]2' (14)

This may be seen as follows: Let the elements of the
ith chain be a; > a;>as** > a;, and the elements of the
jth chain be by > by >+ by, Then a partial order relation
over the combined set of (I, +1,) elements is uniquely
specified by a list of (; +21,) elements. a,, b; and by
(=1to{;, p=1to ) of the type

ajasbiashy aagblbys o«

In this list b} occurs after all the elements of the
ith chain which are greater than b;, and before all the
elements of the ¢th chain which are not. Similarly b}
occurs after all elements of the ith chain which are not
less than by, and before all elements that are. Clearly
if B, > p,, then by occurs after bLQZ in the list, and bé’z
occurs after bgz. We further assume that if in this list,
there is an uninterrupted string of »’s, then all »}’s
occur after b}’s in that string.

The number of ways we may insert a chain of b}’s in
the chain of @’s is (; +1,)!/(;11,1). Similarly for by’s.
Hence the total number of such lists is equal to
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(@, +ip1/1,00,112 (15)

Not all these lists correspond to partial order relations,

In particular, b; must precede b7 in the list for all g8,
for the list to correspond to a partial order relation.
This proves (14),

Now, the number of ways m disjoint chains may be

chosen out of » elements is "*™ "1P,l. Hence the total num-

ber of partial order relations having at most » noncom-
parable elements is

2

Snm-ipn max f’nI (l +l l
TR E A
<y

(16)

where the maximum value of the term inside the square
brackets is to be taken over all m partitions of n (i. e.,
2 Til;=n). The maximum is attained if all /; are equal
to n/m. We drop here the constraint of I, being integers.
Taking the logarithm of the resulting inequality and re-
taining only the terms of order #*, we get

n’ n? 5 .

5 Sb) <3 (1-p)'/? 41n 2+ 06, (17)
Taking the limit » =~ =, we obtain

S(p)<(1-p)/*4In2.m (18)

Covollavy 3.1: If p>48/49, then, S(p) < (In 2)/2.

Proof: From Theorem 3, S(48/49) <(2/49) In [14!/(7
1P#]<zln2,m=

Theorem 3 is not the best possible. Of all the possible
decomposition of a partial order relation into chains;
we may choose the one which gives the largest value of
T, L% (Some of the I, s may be zero,) Then each of
the elements of the ith chain is incomparable to at least
one element in each of the preceding chains j<i¢. This
give the inequality

S i-D < -put-1)2.

i=1

(19)

This constraint, in addition to sharper bounds on N, ,
may be used to obtain an improved upper bound to S(p).
These bounds are, however, still far above the true
value of S(p). In any case, Theorem 3 is quite sufficient
to prove that S(p) is nonanalytic.

Putting together the results of this paper, we see that
S(p) is a continuous function of p in the allowed range of
variation of p, 0 =p <1, It, however, is a nonanalytic
function of p, and there exist numbers p, and p, such
that

S(P)=31n 2 for p, sp<p,.
We have shown that S(p) is strictly less than 3} In 2, if
p<.083 or if p= 48/49. Hence we get from Corollary
2.1

.083<p <4, (20)

and

3 <p,<48/49. (21)

We may interpret S(p) to be the entropy per particle of
an interacting “lattice gas.” Here the “lattice sites” are
the n{n — 1)/2 pairs of elements. The three possible

1713 J. Math. Phys., Vol. 19, No. 8, August 1978

states (@ > b, a<b or a Bb) of a pair (a,b) under a
reflexive antisymmetric binary relation correspond

to three possible “states” of a lattice site in the inter-
acting gas language. A ‘“configuration” of the ‘gas’
corresponds to a reflexive, antisymmetric binary
relation on n elements, and is specified by specifying
the “state” of eqch “lattice site.” We call the (aRb)
state the “unoccupied” state of the lattice site (a,b).
a>b and a< b correspond to two different possible
states of the gas molecule at the “occupied site” (a,b).

The transititivity property of the partial order rela-
tions corresponds to a 3-body interaction between lat-
tice sites. The interaction is hard-core type, in the
sense that it excludes certain configurations from the
statistical sum, or alternatively puts their weight equal
to zero, This condition may be relaxed and the proper-
ties of soft core systems may be of interest.

The flat portion of the S(p) curve corresponds to a
first order phase transition in the interacting lattice
gas. The corresponding value of the chemical potential
of the lattice gas is zero u =-23S/0p . This corre-
sponds to the chemical activity of the gas being 1. We
may speak of the states with p < p, and p > p, constitut-
ing the ‘disordered phase ’ and the ‘ordered phase’
respectively, In the language of partial order relations,
the ordered phase is characterized by a larger value of
‘average maximal chain length. ”

The greatest lower bound approximation to S(p), as
given by Theorem 2, shows that S(p), as a function of p,
contains an infinite number of linear segments. In the
language of phase transitions, the system exhibits an
infinite number of first order phase transitions. The
different phases corresponds to different values of “ave~
rage maximal chain length, ” which serves the role of
the order parameter in this system. The order para-
meter jumps by one unit across a phase transition.

The relationship of these phase transitions to phase
transitions in realistic physical systems, if any, is not
very clear. The transitions are governed by the strong,
long range nature of the 3-body interaction here, not
usually encountered in physical systems. While the
asymptotic enumeration of partial order relations is of
sufficient interest intrinsically, the study of the mecha-
nism of these transitions may be of some interest in
statistical physics. In particular, the distribution of
zeros of the grand partition function®* of this system
may be of some interest.

I would like to thank Professor Jon Mathews for many
critical comments, Professor Kenneth Bogart for point-
ing out Ref. 1 to me, and Ms. RLou Norquist for
typing the manuscript.
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Exact formulas for the calculation of two-body central interactions in the K -harmonics method are
derived. These formulas hold for any approximations and account for diagonal and off-diagonal matrix

elements as well.

1. INTRODUCTION

The K-harmonics method of Simonov and Badalyan!™
have proved to be a very convenient approach to the
problem of finding the energy levels and the correspond-
ing wavefunctions of the bound states of the nuclear
many-body problem with two-body interactions.

An approximation scheme was set in the method by
expanding the wavefunctions of the bound states of the
system, in the c.m. frame, in terms of angular func-
tions which form a complete set of functions in the unit
sphere of E;(4.1), the vector space spanned by the rela-
tive vectors of the A particles which constitute the
nuclear system. These angular functions also contain
the spin and isospin coordinates of the nucleons and
are referred to as K-harmonics when they are totally
antisymmetric and constitute the angular part of
harmonic and homogeneous polynomials of degree K
in the spatial relative variables. The successive ap-
proximations of the method are obtained by considering,
in the expansion of the wavefunctions and in the matrix
elements of the two-body interactions, only the K-
harmonics with K up to K3, Kpy, +1,00°, where Ky,
is the minimum value, compatible with the Pauli princi-
ple, that K can assume for the A-particle system under
study.

The K-harmonics method has been applied with great
success to light nuclei such as °H, *He, and ‘He (Refs.
1—10) to all orders of approximation with an excellent
convergence rate. It was also applied to less light
nuclei such as !He, *~1%0, and ‘°Ca (Refs. 11—13) in
first approximation using the approximate formulas of
Baz and Zukov!! and more recently to %0 (Ref. 15), us-
ing the exact first-approximation formulas of
Gorbatov. !¢

In order to study the convergence of the method for
any nuclei it is necessary to derive formulas which give
the scalar products as well as the matrix elements of
the two-body interactions for any K-harmonic, The
difficulty in obtaining these formulas is the fact that
the integrations have to be performed in S3(4.4), the unit
sphere of Fq(4.1, instead of E5(4.1). Despite this dif-
ficulty some progress was made in the program of ob-
taining these formulas. The first step in this program
was given by Baz and Zukov!* who derived approximate
formulas for the first approximation. Further steps

®0n leave from Instituto de Fisica Teérica, Sio Paulo, Brazil,
under a Post-doctoral fellowship of the Fundagio de Amparo
a Pesquisa do Estado de Sfo Paulo (FAPESP), Sio Paulo,
Brazil,
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were given by Gorbatov!® and Castilho Alcaras!? who de-
rived exact first-order approximation formulas for
diagonal and off-diagonal matrix elements respectively.

In this paper we complete this program deriving
exact formulas for any K-harmonics. We shall use the
same techniques as Ref. 17, from which we borrow,
whenever possible, the notation.

In Sec. 2 we introduce what we call the K-angular
functions and show that working with these functions is
equivalent to working with the K-harmonics. In Sec.

3 we restate Gorbatov’s theorem'® and use it to derive
the scalar products of two K-angular functions and the
matrix elements of the two-body operators between such
functions. Finally, in Appendices A and B, we derive
some results that are needed in Sec. 2.

2. THE K-ANGULAR FUNCTIONS AND THE
K-HARMONICS

Antisymmetric and homogeneous polynomials of de-
gree K can be constructed by filling a Slater determinant
with orbitals ¢;(f) whose space parts are homogeneous
polynomials of degree K; in the spatial relative coordi-
nates p; =R ~r; of the A nucleons such that the sum of
the degrees equals K. Following Gorbatov we shall use
the orbitals

650)= 0yt ()= (pe) " (030) (0ut) A o, (0) 5

i,j:l,Z,...,A, aj,b,-,cj=0,1,2,n=°,

BjsTyj=+3, =3, (2.1)
where py, Py, P are the Cartesian components of p;
and A“j,j(z') accounts for the spin—isospin variables of
particle i, We call a K-angulay function with orbital
labels set {¢}, the following angular function,

¢71(1) e ¢1(A)
Uideh) = % : C (2.2)
¢A(1) eee ¢A(-A)
where /V/ is a normalization constant,
A
K:Z?(a,-+bi+ci), (2.3)
=
A 1/2
p=[ p?] ; (2.4)
i=
and {¢} denotes the set of orbital labels:
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al)blach His T,

{¢}= az;beCZ’ Haos To,

(2.5)

A4, bA’ CarlhaTa.

The Slater determinant in Eq. (2.2) is an antisym-
metric and homogeneous polynomial of degree K. When
K =K, and Kp;n+ 1 this polynomial is also harmonic?
and the corresponding K-angular function U%({¢}} is a
K-harmonic. When K = K;, +2 the Slater determinant
will no longer be a harmonic polynomial and consequent-
ly UX({#}) will not be a K-harmonic. Even so those K-
angular functions are still useful as can be seen by the
arguments that follow.

In Appendix A we show that the Laplacian of Ey( 4.4,
may be expressed in terms of the p; as

Ao -L(5,) (2
vio VZ-—( v)-( v >
ZJ; PO AND Y P

Observe that, written in this way, the E;4.1)
Laplacian becomes a function of one-body operators
acting on the relative vectors. In Appendix B we show
that the one-body operators acting on the relative
vectors transform a Slater determinant into a linear
combination of Slater determinants. One then concludes
that one can easily find the effect of 92 on a Slater
determinant with orbitals (2, 1).

(2.6)

Denoting by |X ~2;4), i=1,2, - the linearly inde-
pendent harmonic Slater determinants of degree K -2,
and by |K;j) a Slater determinant of degree K, one has

V2]K;j>=4?DH|K—2;i). (2.7)
It follows from Eq. (2.7) that, in order to have
v (D nlK5) =0, (2.8)
7
the coefficients A; must satisfy the following over-
determined system of linear equations,
{ZD{})\{:O. (2.9)

In conclusion, one finds that the K-harmonics are
some suitable linear combinations of K-angular func-
tions. Therefore, the scalar products of two K-
harmonics and the matrix elements of the two-body
interactions between two K-harmonics is determined
if we know the corresponding scalar products and matrix
elements for the K-angular functions U5({¢}). For this
reason we shall be dealing exclusively with K-angular
functions instead of K-harmonics.

3. SCALAR PRODUCTS AND MATRIX ELEMENTS
OF TWO-BODY CENTRAL INTERACTIONS

Following what was done in Refs. 16 and 17 for the
K.in K-harmonic, we write the K-angular functions (2.2)
in the operatorial form

A
Useh = o DEdehexp {z’ Ik, p,} :

(3.1)
by defining the antisymmetrizer operator of degree

K and orbital labels set {¢} for a system of A particles
as
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i A
DE({phh= Hm e, 1A, 0
(k;}1-0 p i=1

“piTp;

a bpy py
RS 2 _
e oy e

In Eq. (3.2), P=(P1,P2,...,PA) is a permutation of
A objects, &, ky, k, are the Cartesian components
of k; and {¢} is the set of orbital labels (2.5) subject to
the degree condition (2. 3).

(3.2)

Gorbatov!® proved that for a function §({k}) that is
symmetric in K, k,, . .., k4 one has'®

Di{oh S kD)

A0 5 5 G G)E) ()

;=0 By=0 ¥§=0 {k;}=0

x (a_:'i) N (52—) N 5<{k,})]uif<{¢<a,, CHER)

(3.3)

where, for each one of the (3A) tuples (@, Bi;¥15een,
@4, B4,74), the orbital labels set {zj)(a,-, By, y,)} and asso-
ciate degree K=K({¢(a,, 8;,7;)}) are given by

{¢(a17 Bh 'yj)}

ay =y, by=By, ci=71y U, Ty,

= ( Q2= Uy, by= By, Co—¥yy Koy Ty (3.4)
Ap= 0,04~ Ba,Ca~74slba,Ta,
A
K=20(a;+b,+c;= 0, B=v) <K, (3.5)
J=

When K =K, Eq. (3.5) implies that only K =K, is
actually present in (3. 3) since all the antisymmetrizers
with K <K,,;, vanish identically. Then in that case one
has

K K,
Do S D =Sk =0P D™ ({d ], (3.6)

for any symmetric function §({k}).

Let us consider now the scalar product of two K-
angular functions

W'D |vidoln = [ UEdoDUE{o}) d2%0 a1,

and the matrix elements

WEde D |F, | UEdoD) = [ UL Ed " DE UL D)) d%cacny
(3.8)

(3.7

of the two~body central operator
R A
Fz =
i>4=1

v(|pi = ps1) 06, 1), (3.9)
where (J{i,j) is an operator which acts only on the spin—
isospin variables of the pair of particles (i, j).

The rhs’s of Eqs. (3.7) and (3.8) are evaluated by
using Eqgs. (3.1)—(3.3) and Eq. (16) of Ref. 17, Since
this program was already carried out in some detail in
Ref. 17 for K=K, by use of Eq. (3.6) instead of
Eq. (3.3), it is unnecessary to repeat that material; it
suffices to examine the effects of replacing the men-
tioned equations.
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In Ref, 17, Eq. (3.6) was used to replace

Fidon et 1)

ég"‘) Dok vidohe S Qi ki1, 0

(3.10)
by

KT Aife
FEdal ok 0= fatexp (AT

7) e D5

_ (3.11)
si1nce
.S( tl’[kxf7 )
i3 )
:exp( ESE[ + k%) +2f (ks—k;)]> (3.12)

is a symmetric function of both {k,} and {k{} which goes
to one when {k;} and {k{} go to zero and in that case one
had K=K’ =K

min ¢

Now, instead of (3.11) one has, using (3. 3} twice,

Fidoh e}, 1)
a s b g b fa\ fb\ fe
=11 7, 2 2
=1 =0 B;=0 7,20 &%=0 Bj=0 75=0 \ ¥y B; Y
a; bi\ (i 2\ Yty
% g
aif \Bi ) \7i (HHEJO akrl) <aky’>
2\ '/ @ 2\ 7
% L
(a/e,,> <ak;,> <8ky,> <a/e;,>
le I
X at exp S JLk } Lkz{}; f} t)
DE (s, 85, 7Pk DEo (s, 85 70D . (8.13)

From Eq. (3.12) one has

(W) " S, fkih £, 1)

lim
Bep=0

a n
= exp (4t( RE, +2f:k x1> 511m (ak 1>

i .
X exp ('_ Zt— (kazcl +2kaxl)> =exp <4_lt (kzl +2kaxl))

i n/2 i 1/2
—47> Hn<<'4—t> fx> y 1=0,1,2,000,

where in the last step use was made of the generating
function of the Hermite polynomials, ¥ H,(x).

xS

From Eq. (3.14) it follows that the quantity between
brackets in Eq. (3.13) is equal to

(- )-K (é) e Klw/dfexpézg
L) ) s () ) 0 ()
X Hy, (<Zz_) 1/2fy) H”<<_42_~t) 1/2fz> Hy’,«fg 1/sz )]

(3.15)
1716
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<

)

Now, for each component f; of f one expands the
product of the 24 Hermite polynomials which depend
on it in powers of Vi/4t f;. Since each Hermite poly-
nomial has a definite parity, the resulting polynomial
in f; will also have a definite parity given by the sum of
the degrees of the 24 Hermite polynomials involved
and therefore the integration in f; will vanish when such
parity is odd. Performing the integrations in f, f,, f.
one then obtains

F¥( {ds} {o'h 1)

IDEDIEDD

l 1 [:“l =0 By=0 v,=0 ay=0 83=0 vi=0

(o) G G GO G 6)

XBy4 ({0‘,}, {0‘ }}) B, <{BJ}’ {8 ;})B A({'Yi} ’ {7;})

y i (K=-K+K*'-E" /2 _7_Tj4_t 3/2
41 A i

xDE' g’ (s, 85, yDEDEH0 0y, 85, vk, (3.16)

where the B4({n;}, {2{})’s are defined through the follow-
ing four steps:

2]

A
(Yo = Z% (n, +n}), n,,n} =nonnegative integers; (3.17)
1=
(ii) for @ =odd, B,(fu}, nih)=0; (3.18)
(iii) for @ =even, define C5 ({n}, {n{}) by
a/2
A, 00 By = 33 COnd b= (5,19
(iv) for @ =even
e/l {a = 2m)!
Bathnsh tnih) =24 €5t i) gmyaremg 7 =y +
(3.20)

[In Table I we list the B ({n;}, {#{}) necessary when
K+K <2Kq . +8.]

From now on, one follows the same steps of Ref. 17,
taking into account that the integrand in ¢ has now an
extra factor

i\ ¢ K-K+K'-K" /2
<?i't')

and the antisymmetrizers are now DX'({¢’(a}, 85, v}) s

and Dﬁ({‘b(an Bjy Y3 )})k .

In this way, one obtains for (3.7) the expression

UEden Uil
3(A 1)/2/\//\//All}(' <n ’b ’
KK zK-"'*ir((K FK 134 -3)/2) aitbileq!

SRS SR S deneh
=t | @g=0 8720 v,20 o os,_Oy-o aj!Bilvit
X (=)*K 2B, ({a,}, {aih) BaUB.}, {861 Batlyi}, vt}

XBotaj iy iortal, &1
(3.21)

where
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TABLE 1. Values of B, ({n;},{#{}). 1t follows from Egs. (3.17)
that, for a given «a, the B's depend on {»;} and {x}} only through
a partltlon of « mto 2A elements (not necessarily distinct).

The notation § in column 2 means that the number 0 must be
repeated as many times as necessary.

« Partition B
o {0} 1
2 {20} ~242/4
1110} 2/A
4 {40} 12—24/A4112/A°

{310} —12/4+12/4?

{220} 4-8/4+12/A%

{2110} —4/A+12/4°

{11110} 12/A?

6 {60} ~120+360/A — 360/A%+120/A

{510} 120/A — 240/A%+120/43

420} — 24+72/A~168/A%+120/4%

{4110} 24/A -144/A% 1120/ A%

{330} 72/A ~144/A%+120/43

13210} 24/A —96/A% + 120/A°

{31110} —72/A%+120/A%

{2220} —  8424/A —T72/A%+120/A3

122110} 8/A —48/A%+120/A%

(211110} —24/A2+120/43
1111110} 120/43

8 {80} 1680 — 6720/A +10080/A4% —6720/4%+1680/A%
1710} ~1680/4 +5040/4°% — 5040/A% +1680/A%
{620} 240 — 960/A + 2880/47 — 3840/4% 1 1680,/A¢
{6110} — 240/A + 2160/A% ~ 3600/A% + 1680/ A1
{530} —720/A + 2160/A% — 3120/A% + 1680/ A%
15210} ~240/A+1200/A% — 2640/4%+1680/A44
{51110} 720/A% - 2400/A3% + 1680,/ A4
440} 144 - 576/A + 2016/A% — 2800/A° + 1680/ A1
4310} —144/A+1008/A2 - 2160/A4°% + 1680,/A"
{4226} 48 ~192/A+768/A2 —1920/A4% + 1680/4%
{42110} — 48/A+432/A%-1680/4°%+1680/A4%
{411110} 144/A? — 1440/ A% + 1680/ A
{3320} ~144/A +720/A%2 - 1680/43 +1680/A"
{33110} 432/A% ~1440/43 + 1680/ A1
132210} — 48/A+336/A2—1200/A%+1680/4%
{21110} 144/A2 - 960/A45% + 1680/A4
{3111110} —720/A4% +1680/A¢
{22220} 16— 64/A+288/A2— 960/A%+1680/44
222110} —~ 16/A+144/A%~ 720/A4%+1680/A44
{2211110} 48/A% _480/A%+1680/A44
{21111110} —240/A3+1680/41
{111111110} 1680/44
(=)
5!@(&,,8,,7,)}{0'(04"3 "‘”—-{ 0 (3.22)
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the first value being attained when D Ep (@4, 85, )My
and DE({p(a,, B;,7;) D have no repeated orbitals and
their sets of orbital labels are the same up to a permu-
tation P of the orbitals. The zero value is attained if
any one of the above conditions is not fulfilled. It follows
from the definition of the B’s and from Eq. (3.22) that
K-angular functions whose K values have opposite pari-
ties are orthogonal. This is an expected result since

the parity of UX({¢}) is (=)¥.

For the matrix elements (3.8) one obtains the
expression

UE o NIF, | U5l \

@720 B;=0 v,;=0 a}=0 B3=0 v}=0

“(a) () (o) (26) (60) (3)
<&, {9, B, vHF, [ K {¢las, 857,  (3.23)

where (&K', {¢'(a}, B, v} }IFz 1K, {¢( ozl, B,,y,)}) has almost
the same formal expression that WK HEF, IUE{o )
would have if K and K’ were both equal to Kpyy; that is,
it is zero when DE({¢(@;, 8;,7,)Dx and DX ({p(as, 8, 7))
have repeated orbitals and/or their sets of orbital
labels have less than A==2 orbitals in common and,
when none of these vanishing conditions prevails, it
assumes the value

&', 4 (as, B, y)DHE, | K, {o(ay, B, 7))
(,C/V/V'A!VV’ 34/2=2;K-K' 5 %é

2K E+K'f2-K/2-1

x[[((K +K'+34)/2-3~-5)2s +1)1 1]

1
xf dzzs”/z(l _ Z)(K+K’)/2-s#3A/2-4v(p‘/E)
0

X6V, 3; )G |0, 2) i) + (ji| 0@, 2) |58)]
- 6, 5; )4 |0, 2)[53) + Gi | 0@, 2) | i)}
(3.24)
The value of £ and the range of variation of i and j

depend on the number of orbitals that D% ({¢’(a}, 85, ¥))De
and Df{o(a}, B;, v;))x have in common:

(i) £=(=)F and j>i=1,2,.,.,A (3. 25)

when the orbitals of one set differ from those of the
other set only by a permutation P;

(ii) E=(=)?(=)", j=A andi=1,2,...,A~1 (3.26)

when the sets have only (4 - 1) orbitals in common,
brought to the order 1,2,,..,A—1 by the permutations
P and P’;

(iii) £ =(=)P(=)", j=A, i=A-1

when the sets have only (A - 2) orbitals in common,
brought to the order 1,2,...,4 -2 by the permutations
P and P’,

(3.27)

The other constants of Eq. (3.24) have the same
formal expressions of Ref. 17 adapted to this new
situation; i. e.,
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(3.28)

dij={ay+b;+e;+a;+b;+c;+aj +b] +c}+a,+b+c}
=@y~ Bi-vi= ;= By=y;—af = Bi-vi-aj-Bi-v;)/2,
(3.29)
@it |0, ) [ =ALy, 4, ()AL - @) 0(1,2) Ay (D) Ay yr(2),

(3.30)

¢ (=)S d'].-s Al -5
69 = gt o &) () e, a=1.2
(3.31)

g ;=[(a; ~ a;)1(0; = B) (s~ vi) ! (a; - ;) (b; =B (c; =y

X{aj - af)! (b= B! (c)~y]!

x (aj—apt(b;-pnlics; -y, (3.32)
. P] =ty a a;:-ut; 3 by-8;
JY- Lim (_> <___) <___)
YT g ai-o \ka ki ey

o

x -2 bﬁ'ﬁf(a)cwf a\ HTH g\ s g o\ G
(ak;l) 0k <aké1> <akx2> <ak;‘2>

3 i=Bj P b;"B'j ! Ci~v; 3 C'J"ylf
x {2 2 7 2
<8ky2> <ak§2> <ak22> <6k;2)

x (k1 - kZ - k{ +k§)2(“3)(k1 R k{ +k2 . ké)"-l ,

b

(3.33)

2 Q=g 3 ai-&; 2 bi-8;
w=im G G )
H ), (X 1=0 \9Ry 2% dkyy

3 b"i ‘B'i 3 Ci=ri 2 c; '7'1' 3 ejmoj
x 1 _ — —
<3k§z> <akz1> (ak.'zz> <akx2>
2 a'i'all P b ;=B 3 b,i'ﬂ;' 2 €47
X f— —
<ak,g,> <ak»2> (ak§1) (akz2>
cl-yl
X 2 7 7\2(1+s) ryn=1
sz ) =y Ky By g

(3.34)

It follows from the definition of the B’s and from the
above equations that the matrix elements (3. 8) of the
two-body central operators (3.9) vanish when K and K’
have opposite parities,
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APPENDIX A: £5 4.1y LAPLACIAN IN TERMS OF
Pi
The Laplacian in E4 4.4, is defined as
4-1
vi=2 ¥, (a1)
i= i

where the & are the Jacobi coordinates
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-1 1/2 1 i
£t= <l ) <ri+1'__- E I']) y 1—1,2, y(A"l)y
? 4=t
(a2)
1 & /i
EA:T—A-ngZ 44R.‘2 (AS)
One uses Eqgs. (A2) and (A3) to define a matrix C
whose entries C;; are given by
A
€,-:j§ Ci,-r,-o (A4)

Comparing Eq. (A4) with Egs. (A2) and {A3), itis
easy to verify that the matrix C is orthogonal, i.e.,

CC=CC=1, (A5)
Using Eqs. (A4) and (A5) one obtains
A A 1
pi=T;=R=21(Cub=2 Cus b= 7 a (46)
from which it follows that
A
Ve,,:.?J‘Ck,-V,,j, E=1,2,,..,A=1 (AT)
i=
and, consequently,
Aat A=l A A
vie Bo =5 (2 Boweyw, v,
k=t k=1 \izl 4=t £
A /A
=2 <E CinCri~ CA:CAJ) vp, Y,
1, j=t \p=l
A 1
= -=) vV, «V
{,2121 <6L7 A) 91 pj
A 1 A A
:Evg_—@)v,)‘(Ev,) (a8)
is1 F 1= ¢ =t 7

APPENDIX B: THE EFFECT OF ONE-BODY OPERATORS
ON SLATER DETERMINANTS

Let us denote a Slater determinant with orbitals
(2.1) as

bi(1) <.+ ¢4(A)

(¢17 ¢2)"-)¢A)= ; . (Bl)
$4(1) +-c PalA)
and define the one-body operator
A
0=2 00, (B2)
where (J(i) are operators which act on the relative
vector of particle ¢ as well as in its spin—isospin
variables.
Using Egs. (B1) and (B2) one obtains
0(4’1’ ¢2’ cny ¢A)
= n.iz.E....iA E'1‘2“"".40[¢>1(i1)¢’2(i2) rerpalia)] (B3)
J.A. Castilho Alcards 1718



Now
0[¢1(i1)¢2(i2) o ‘PA(iA)]
=[0G d1(i)] Dy} + = - P alda)
+ (G 0) d2lin)] d3(8y) <= Palin)

1) <o Pa (GaDIOGDaGA)]. (B4)

Substituting Eq. (B4) into Eq. (B3) one sees that each
term of Eq. (B4) leads to a Slater determinant. There-
fore, one has

0(¢1, ¢2r"':¢A):($1’ ¢2;--',¢A)+(¢1; 52’ ¢>3,--
Hoeot By, Poyeeny Pang, Ba),

°7¢A)

(B5)
where

6,)=00) ¢,() . (B6)
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Bifurcation in the presence of the rotation group is investigated. The covanant bifurcation equations are
derived using the familiar angular momentum operators of quantum mechanics. Variational methods are
also discussed. It is shown that the quadratic terms either vanish for odd I or possess a gradient structure
for even I. This result is generalized to the case of an arbitrary simply reducible group. Applications to

problems in geophysics and elasticity theory are discussed.

1. SYMMETRY BREAKING INSTABILITIES

There are a number of situations in classical mech-
anics in which the onset of instability of a physical
system is accompanied by a spontaneous symmetry-
breaking bifurcation. For example, the onset of con-
vection in a spherical mass or the buckling of a per-
fectly uniform spherical shell leads to a bifurcation
which breaks complete rotational symmetry. In such
cases one is led to an investigation of the branching
of solutions of a nonlinear functional equation G(x, )
=0 in the neighborhood of a known solution (X, «,).

If G,(n,, u,) (G, denotes the Frechet derivative of G) is
a Fredholm operator of index 0, the problem is re-
duced, via the Lyapounov—Schmidt method, to a finite-
dimensional problem

F,0,z,...,2,)=0, i=1,...,n (1.1)

where n=dim kerG,(x,,u,).

If the original equations G(X, #) are covariant with
respect to a representation 7, of a group G —that is, if
T, G(x, u)=G(\, T ,u)—then the bifurcation equations
(1.1) are covariant with respect to a finite-dimensional
representation ofg. A direct computation of Egs. (1.1)
by numerical methods is often a major obstacle in
their analysis, certainly if the original system of equa-
tions is very complicated. Using the covariance of the
equations, however, the structure of the bifurcation
equations can be computed up to unknown constants,

In the case of the rotation group Busse,!® using classical
formulas of Gaunt for triple integrals of spherical
harmonics, constructed the quadratic terms of (1.1)
when kerG, transforms according to an even irreducible
representation of SO(3). In this paper we give an
algorithm for obtaining the full structure of Eqs. (1.1)
at all orders based on the Lie algebra of infinitesimal
generators of the rotation group. The methods are
familiar in the theory of angular momentum coupling

in elementary quantum mechanics.

Group theoretic methods allow one to determine the
bifurcation equations only up to unknown scalar con-
stants; the dependence of these scalars on the original
physical parameters of a particular problem could be
determined by a direct computation of the bifurcation
equations, say from the Lyapounov—Schmidt method.

D This research was supported by grants from the Natjonal
Science Foundation MCS 73-08535 and the U.S. Army Re-
search Office DAAG 29-77-G~0122,
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Rather than proceed in that direction, one can follow

an approach similar in spirit to Thom’s catastrophe
theory?®:3: The unknown parameters are regarded as
free parameters, or control parameters, and one seeks
a classification of the types of transitions (i.e.,
singularities) which may occur. In this way one can
obtain a universal classification of the bifurcations
which may occur in a physical system which is based
on the geometry of the problem and is independent of
the particular physical mechanism involved.

In resolving a bifurcation problem one is interested
in determining the stability of the bifurcating solutions,
and these questions are also discussed in the present
paper. Since there is a three-parameter group present,
the solutions appear in three- (or sometimes two-)
dimensional orbits; hence they will at best be orbitally
stable, with two or three neutral modes.

In Sec. 2 we review some of the basic ideas of bi-
furcation theory, adding some modest improvements
to cover the present case. In Sec. 3 we discuss the
Lie algebra of angular momentum operators J,,J_,
and J, and show how these may be used to construct
Egs. (1.1) when kerG, is irreducible; in Sec. 4 we
discuss the modifications which must be made when the
kernel is reducible. We also construct the generating
function for the number of covariant terms in (1. 1)
of any given degree. The derivation is closely related
to that of the Molien function (Jaric and Birman?).
Given a finite-dimensional representation I" of a com-
pact group G, the Molien function counts the number
of times the identity representation is contained in the
symmetric part of I'®7, In the present case we are
interested in counting the number of times I' is con-
tained in the symmetric part of T'?"; the generating
function in that case is

M (TG, 2)= [ detll-zT(g)]"'X(g)d i),

where dit(g) is the normalized invariant measure on
¢ and X is the character of I'. We calculate M, ex-
plicitly for the rotation group O(3).

(1. 2)

The extremum principle discovered by Busse! is
discussed in Sec. 5 and its relationship to the sym-
metry of the 3-j symbols for SO(3) explained. More
generally we show that the result continues to hold
whenever Egs. (1.1) are covariant with respect to an
irreducible representation of any simply reducible
group. A theorem of Wigner®® on representations of
simply reducible groups then implies that the quadratic
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terms in (1.1) vanish for an odd representation or
possess a gradient structure for an even representation.
This is a striking result, since it implies the bifurca-
tion equations may possess a gradient structure even
though the original problem did not arise as a varia-
tional problem.

In Sec. 5 we also show that the variational problem
associated with the bifurcation equations can, in the
case of SO(3), be formulated as

min 3trA®
subject to the constraints
$trA®=1, trA=0, trAB,=0,

where A is a symmetric matrix and the B, are sym-
metric matrices which transform according to certain
representations of SO(3). For != 2 this leads to the
Euler—Lagrange equations

AZ=2A +41, (1.3)

where A is a 3X3 symmetric traceless matrix and /

is the 3x3 identity matrix. This problem is easily
resolved, giving an especially simple resolution of the
bifurcation problem in the case [=2., (The results
described in this paragraph were obtained jointly with
L. Green) The approach is compared with that discussed
by Michel and Radicati”:® in their investigations of sym-
metry breaking in elementary particle physics.

Section 6 contains an analysis of the relationship
of the stability properties of the bifurcating solutions
to the extremal properties of the solutions of the
variational problem, Results of this type have pre-
viously been obtained by Sather.®

In Sec. 7 we discuss the resolution of the bifurcation
equations when kerG, transforms according to an ir-
reducible representation D! of SO(3) for low values of
1. Busse’s solutions for even ! are discussed, and
their stability is analyzed.

Finally, in Sec. 7 we discuss situations in classical
physics in which questions of bifurcation in the pre-
sence of O(3) arise. These are generally problems in
geophysics'® and elasticity theory'*»'?:® which are
modeled by nonlinear systems of partial differential
equations. We close with a brief discussion of some
of the open mathematical problems.

2. LYAPOUNOV-SCHMIDT METHOD

The Lyapounov—Schnidt method, or alternative
method, discussed at length by many authors, enables
one to reduce an infinite-dimensional problem to a
finite-dimensional one, We present here, very briefly,
a slight modification of the argument in Ref. 13 which
deals with the case in which the equations are covariant
with respect to a transformation group.

Suppose the equilibrium states of a physical system
are represented by solutions of the nonlinear system

of equations
G(x,u)=0, (2.1)

where G: AXX — Y is a smooth {Frechet differentiable)
mapping, A is a finite-dimensional vector space, and
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X and Y are Banach spaces. We assume here that all
spaces are Banach spaces over the complex numbers.
Let {x,,u,) be a solution pair of (2.1) and let L, =G, (x,,
u,) (G, denotes the Frechet derivative of G). Let/V
=kerL,C X and X =RangeL,C Y. We assume that G is
regular in the sense that for any (A,,u,) R is always

a closed subspace of finite codimension, /V is finite-
dimensional, and dim/V=codimR”. If / is trivial and
R =Y, then by the implicit function theorem there is
an analytic curve of solutions u=u(\), defined for
sufficiently smalllx —x, I, with u#(x,})=u,. From now
on, for simplicity, we shall always assume A,=0,

1, =0.

itV is nontrivial, then (0,0) may be a bifurcation
point of solutions of (2.1): That is, there may be
several distinct solution branches which confluesce at
(Ao, %,). Let dimV =5 and choose vectors ¢¥, ..., ¢}
in Y* such that

R=A{f: (f,0r)=0, j=1,...,n}

Then the ¢} must be null vectors of the adjoint opera-
tor L¥. Choose vectors ¢,,...,¢,c Y such that
(@;, @F) = 5,;; then the linear operator

sz:; freh e,

is a projection, and @,=1- P, is a projection of ¥ onto
R . Similarly, let P, be the projection onto the kernel
N(L,P=0). We can write

n

Plu' = Z; <u7 w?‘)d).i’

s
where the vectors ¢, span /V. Let@,=I-P,.

To reduce (2. 1) to a finite-dimensional problem in
a neighborhood of (0,0), we decompose the problem
as follows:

u=Pu+ Qu=1v+y,
GO, u)=P,G(x,u)+Q,G(\, u)=0.
We first solve
HO, v, ) =@,G0 v+ ) =0, (2.2)

At the point A=0, v=0, ¢¥=0, the Frechet derivative
of H(x, v, ) with respect to 9 is

Hd)(ov O’ 0) = Qz Gu(o’ O) :QzLo-

Now @,L, is an isomorphism from the subspace @,X

to @,Y. In fact, @,L,u#=0 implies L,u=0 and therefore
that uc/V; but if e @ XN/ then u=0. Therefore, L,
is a bounded one-to-one mapping from @,X to @,Y. By
the closed graph theorem L, is invertible, hence an
isomorphism. It follows from the implicit function
theorem on a Banach space that there is a smooth
solution $=gy(x, v) of (2. 2). Since X and Y are complex
Banach spaces, ¥ is analytic in » and v. The solutions
of the full equations (2.1) are obtained now as solutions
of the bifurcation equations

F(\, v)=P,G(\, v+ 3(x,v))=0. (2. 3)
Equations (2. 3) comprise a system of n equations in
n unknowns; by writing v=2,y, +... + 2,4, we can re-
write (2, 3) as
D.H. Sattinger 1721



Fj : (>\1 Zpyven 1Zn):<G()\, Zl¢1+ L +ann
+ P, v), 1) =0.

Now suppose the nonlinear mapping G is covariant
with respect to a representation T, of a group ¢:

T G, 1) =G, T u).
We have

(2.4)

Theorem 2.1: Let G(x, u) be covariant with respect
to a representation T, of g Then /V reduces T,. Assume
the projections P, @, commute with 7,. Then the bi-
furcation equations themselves are covariant with
respect to the finite-dimensional representation T
=T,N: that is, TF(\,v) =F(x,Tv), where F is given
by (2.3).

Theorem (2. 1) was proved in Ref. 13 where it was
shown that commuting projections P; and @; can be
constructed if XC Y, [In that case the resolvent opera-
tor (x = L) is well defined and the commuting pro-
jections can be obtained by the standard residue for-
mula

_ 1 -
Py fc(x_L) dx,

where C encloses the isolated eigenvalue of L at the
origin, | The assumption XC Y is quite natural if G is

an elliptic system of partial differential operators;

then a natural choice for X and Y is typically X =C, ..q,
Y=C,.,, where C,,, are the Banach spaces of functions
with Holder continuous derivatives. We note here,
nevertheless, that if g is compact, we can drop the
assumption XTY and construct commuting projections
as follows.

Lemma 2.2: Let T, be a representation of the com-
pact group g on the Banach spaces X and Y. Let L
be a bounded mapping from X to Y which intertwines
with T,; T,L=LT,. Let V=kerL CX be a closed
finite-dimensional subspace and let R =RangeLCY be
a closed subspace of finite codimension. Let @ be any
projection onto R and P =1 - @. Then the projections
@ and P =1 ~@Q, where

@=J, TmQT,dulg) (2.5)

commute with T, for all hkeG. The same result holds
for the projections P, and @, =1~ P,, where P, is any
projection onto kerL in X.

Pyoof: The fact that @ as given in (2.5) commutes
with T, follows from the invariance of the measure
dp(g). Since R is invariant under T, and @, it is clear
that R is invariant under @ as well, and alsp its range
is contained in R. It remains to show that @ is a pro-
jection, and to that end it is enough to show that
Qf=f if fe R. We have, whenever f=Lu,

Of=QLu= [ T QT Ludp(g)
=/ T 1QLT judp(g)
= [ T LT pudp(g) = Lu=f.

The proof for the case that P, is a projection onto
kerL in X goes similarly.

We remark that in the case of representations of a

1722 J. Math. Phys., Vol. 19, No. 8, August 1978

noncompact group a reducing subspace need not possess
a projection which commutes with the representation.
For example, the action of R* on R? by (}}) leaves the

x axis invariant, but all projections onto the x axis

take the form (1¢), and none of these commute with the
action.

In order to analyze the bifurcation equations (2. 3), it
is often convenient to reduce them further by scaling
them, as follows. A uniformizing parameter ¢ is in-
troduced by setting

A =¢e™0, v=€"w, (2.6)

where w=w, +ew, +¢e®w,+ ... . The appropriate powers
of m and n are determined by a Newton diagram.** Now
suppose

F(emo, e"w) =€Q(0, w,) + O(e**),

where k> max{m, n}. Dividing by e* and letting ¢ — 0,
we arrive at the veduced bifurcation equations

Q(Ua wo) =0,

where ¢ may be chosen conveniently, If the Jacobian
®@,(0,w,) is invertible at a solution (o, w,) of (2. 7), then
solutions of the full bifurcation equations may be ob-
tained from the implicit function theorem. In the case,
however, that Eq. (2.3), hence (2.7), are invariant
under a Lie group the solutions of (2.7) may appear in
k-parameter sheets; and in that case the Jacobian
Q,(0, w,) will possess a k-dimensional kernel, spanned
by the vectors L;w,, where the operators L, are the
infinitesimal generators of the Lie group g .

(2.7)

Given a solution (o, w,) of (2.7) we examine the full
solution curve (2.6). If m is even, the bifurcation is
one-sided (that is, solutions appear for x>0 or A <0).
When o >0, the bifurcation is supercritical, and it is
subcritical when o <0. When m is odd, the branches
appear on both sides of criticality (transcritical case).

Stability of the bifurcating solutions: Let a non-
trivial one-parameter branch of solutions of (2. 1) be
given by (i(e),u(e)) and put L) =G, (), ule)). Ac-
cording to the principle of linearized stability the local
stability of the solution u(e) is determined by the
eigenvalues of L{¢). When e =0, L(0)=L, has (by as-
sumption) an eigenvalue of multiplicity » at the origin;
and, if the trivial solution # =0 is just loging stability
as A crosses zero, all other eigenvalues of L, must
lie strictly in the left half-plane. The stability of the
bifurcating branch is therefore determined by the
behavior of the n-fold eigenvalue at the origin as ¢
varies from zero. The following theorem is proved in
Ref. 14,

Theorvem 2. 3: Let E(e) denote the analytic projection
valued operator whose range is the n-dimensional in-
variant subspace of L(e) corresponding to the n-fold
eigenvalue at the origin. Then the eigenvalues of L(e)
in the vicinity of the origin are precisely those of the
n-dimensional operator Ble)=L{(c)E(e). Furthermore,
if the scaling of the solutions have the form (2.6), then

Ble)=e*"Q (0, w,) +O(* ™).

Accordingly, to lowest order in ¢, the behavior of the
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multiple eigenvalue 0 under the perturbation along the
bifurcating branch is determined by the eigenvalues of
the Jacobian of the reduced bifurcation equations.
Supercritical solutions are stable if all eigenvalues of
Q,(o, w,) are negative and subcritical solutions are
stable if all eigenvalues of @,(0, w,) are positive.

When a continuous transformation group is present,
one or more of the eigenvalues of @,(c,w,) are zero
{depending on the dimension of the manifold of solu-
tions); in that case one can at best conclude orbital
stability from an analysis of the reduced equations:
There will always be a number of neutral modes pre-
sent.

3. CONSTRUCTION OF THE COVARIANT
BIFURCATION EQUATIONS IN THE CASE
SO(3)

We denote by I' the representation T, IN. Let us ex-
pand F(x, v) of (2. 3) in a power series in v:

F(\, v)=AM)v+B,(\, v, 0)+ B,(A\,v,v,0) +... .
Then we must have

TAQM)v=AN)Tp,

T B,(», v, 1{)) =B,(x,T'v, Tw),

3.1)

Therefore, each multilinear operator B is covariant
with respect to the representation I,

We first make the assumption that I is irreducible,
that is, that I'=D!, where D’ is one of the irreducible
representations of the irreducible representations of
S0O(3). The contrary case, when /V is reducible, is
sometimes called “accidental degeneracy” by physicists
(Ref. 5 p. 161); Ruelle'® suggests the situatien is
nongeneric. Indeed, that is clearly the case in a prob-
lem analyzed in detail by Chow, Hale, and Mallet-
Paret.!® They consider the buckling of a rectangular
plate. Since the symmetry group of the rectangle is
Abelian, the irreducible representations are all one
dimensional; but when the ratio of length to width is
V2, the principle eigenvalue has multiplicity 2. This
situation is clearly nongeneric, for it depends on a
specific choice of physical parameters.

The reducible case is discussed in the next section.
When T is irreducible, the linear term in (3.1)is a
scalar multiple of the identity by Schur’s lemma. Thus
AQ)=0c(Q) for some scalar 0. The quadratic term
B(\, v,w) must be symmetric in v and w and transform
as D!, The quadratic mapping B may be regarded as a
subspace of symmetric second order tensors which
transform as D! under the action of SO(3). The
Clebsch—Gordan series

D'@D'=D¥gD?'g...q D° (3.2)

tells us that the tensor product space /@ / decomposes
into a direct sum of subspaces, precisely one of which
transforms according to D?, as follows:

NeN=V3g...q Vig.c.more ave,

In this decomposition V?? consists of symmetric tensors,
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V2! antisymmetric tensors, and so forth. Accordingly
V! consists of symmetric tensors iff I is even. There-
fore, for odd I the quadratic teym vanishes, and we
must go to cubic terms to get the reduced bifurcation
equations. (We shall show below that a similar result
holds more generally when G is a simply reducible
group. )

Since we are interested solely in symmetric tensors
over /V, we can work with polynomials (due to the
natural isomorphism between the ring of polynomials
and symmetric tensors over /V). We therefore identify
N with the vector space of linear polynomials in the
variables z,,..., 2, [since dimD'=(2]+ 1)] and denote
by Klz_,..., z,] the ring of polynomials in the indepen-
dent variables z_;,...,z,. K is then isomorphic to the
algebra of symmetric tensors over /.

Let the bifurcation equations be

Folz,...,2))=0, m=-1,...,L

The linear terms of F, are of the form

Fo(z,...,2)=az,

since, as we have said, the linear term must be a
scalar multiple of the identity. The quadratic terms
are given by

F =

m (3.9)

2 C(l, my;my;l, my;l,m)z
my +mo=m

mlzmz ’

where C(l, m;l, m,;l, m) are the Clebsch— Gordan co-

efficients for SO(3), or
Fo=(-1" %, (nlzl

my +m2=m

7'5142 _lm> zlemZ s (3. 4)

where
Ji Jz s
my m, m,
are the Wigner 3-j coefficients for SO(3),

In the general case the terms F, can be constructed
by the following algorithm. Let the infinitesimal gener-
ators of SO(3) be J,,J,,J,; these satisfy the commutation
relations

[J'., Jj] =€Uleu
where ¢,,, is the completely antisymmetric tensor,
Putting J*=tJ, +iJ, and J*= ~iJ,, we obtain instead
the commutation relations for s1(2)

(0%, I ]=2J3, [J3, %] =+J%, (3.5)

By well-known algorithms (see Ref. 17, p. 234), using
the commutation relations (3.5), we can construct a
basis f,, for the complexification of the vector space

N such that

Iy fm=mfp,
J*fm zﬁgmfml ’
where

~lsms<l and B, =[{-m)I+m+1)]/2,

In addition, the f,, can be normalized so that the reality
condition

Fm=(=1"f, (3.8)
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is satisfied.

Since I have not found (3. 6) in the standard references
I will give a proof here. First note that the operators
J,,J,,J, are real operators, and so J°=-J° J =-J",
J"=~J". It follows that J%f, = f, = — J°f, and there-
fore that J,f,,= —mJf,. The vector f, has weight —m.
Since 'V is irreducible there is only one vector with
weight —m, and that is f_,. So f,=C,f.,. On the other
hand ‘Cfm:Bmfm+1 50 J*fm:Bmfrrml :Bmcm-»lf-(mu)
==Jdf,==dc, fo==Cd fomn=—CuBnS-m1. Consequent-
ly, ¢,.,=—c, and we can take ¢, = (- 1)"c. For m=0
we have fy=cf,. Choosing c=1, we obtain that f, is
real and f,, = (- 1)"f_ .

The reality condition (3. 6) is important when we wish
to restrict ourselves to real solutions of the bifurcation
equations (1.1).

We now require the variables z,, to transform as the
Jnunder J, and J,. We extend J, and J, to be derivations
over K:

J(af +Bg)=adf +pdg,
J(fg)=fIg + (Jf)g,

where f,g< K and o« and B8 are scalars. It is natural to
extend the J’s in this way since they are Lie deriva-
tives.

If the functions F (2 _,...,z;) are to transform as

D' they also must transform as the z,,:
JF,,=mF , JF_=B,,F,..,- (3.7)

For example, the quadratic polynomials F, are ob-
tained as follows. The action of J; on z,z, is

JIi(2,2,)=1(J32;)2, + 2,(d,2,) = + R)z,2,
80 J32,2,=mz;z, if j+k=m. Therefore,

F (z4,...

m 721):

Z, 2. .
m1+m2=m/]’"1m2"‘ my-my

In particular, when [ is even,

2
Fi=0,2,20+ 2,42+ 0+ ay (2, 5) -

Furthermore, J . F,=8,F,= 0, and this condition gives
us a set of linear equations for the coefficients
a,*** ;5. In the case I=2 we have

F,=az,z,+b2%,
J Fy=aByz,2, +208,2,2,
={aB, +2bB,)z,2,=0,
aB, +2bB,=0.

The last equation determines the coefficients ¢ and
b, hence F,, up to a scalar multiple. Once F, is known
we get ', | from

J-Fy=B,F,
and so forth, In this way we can construct all the F s,
This procedure extends immediately to higher order

terms. For example, to get third order terms we
write
F,= 2,
i+ j+k=1

and apply

;588252
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JF,=0

to get a linear system of equations for the a;;,. For
1=1 there is only one solution but for I=3 there are
two independent solutions. In fact, the condition J,F;=0
in that case leads to five equations in seven unknowns
(see Sec. 7).

4. THE CASE I' REDUCIBLE

We begin by deriving a generating function which
gives the number of covariant n-linear symmetric
mappings for arbitrary n. We first derive a general
formula for arbitrary compact groups, and then apply
the formula in the specific case of O(3). We denote the
irreducible representations of g by I', and suppose
T'= Za,IV, where a, is the multiplicity of I' in I'. The
characters of I" and IV are denoted by X and x” re-
spectively.

Theovem 4.1: Let I be a representation on the vector
space /V of the compact group G and let ¢, =c,(T, )
denote the number of completely symmetric #-linear
operators B on A/ @ AV to /V which are covariant with
respect to I'. Then a generating function for the coef-
ficients ¢, is

> ¢(T,G)2"=M,(G, T, 2) = [G detll - 2T ()% () dis(g).

n=0

(4.1)

In the above expression p(g) denotes the normalized
invariant measure on §; we set ¢,(I',§)=1 by
convention.

Proof: Let V* be the dual of /V; let the n-linear map
B be covariant with respect to IT'; and put

Flu,,.

where u,_,; «/V* and { , ) denotes the bilinear pairing
between / and A*. Let T'(g)=TI"(g™) be the contra-
gradient representation. (Here I'* denotes the adjoint
of T relative to the bilinear pairing ( , )). F is a tensor
in V®¥" o A* which is invariant under the representation
r'®s % in fact,

r'®ng fF(ul,..
=F(Tuy, ..., Tu; Fu )
=(B(Tuy,...,Tu,), f“nu)
=(TB(ty,...,u%,), f“n+1>
=By, ...

° un;uml) =<B (ul’ eeccy u"), un¢1> ’ (4- 2)

° un; un&l)

Sy Uy =F @y oo vyt 0,).

The correspondence (4. 2) between covariant z-linear
maps and (n + 1 )-linear invariants is one—one. On the
other hand, the number of invariants is equal to the
number of times the identity representation is contained
in the tensor product representation r®sg . This
number is given by the expression

L x"(@x()dug).

Now, however, we must modify the argument to take
into account the fact that B is completely symmetric.
We do this by restricting the representation I'®" to

the symmetric part of N©7; the restriction of T'®" to
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this subspace is denoted by (I'®")s. The character y,,
of (I'®n)s is given by the generating function
det[l - 2T()]" = 2 x.(£) 2", (4.3)

n=0

where x o(£)=1. The result (4, 1) now follows
immediately.

A derivation of (4. 3) may be found in Littlewood!®
in the chapter on Schur functions: but for completeness
I will present a simpler derivation in the Appendix.

The expression (4, 2) for the covariant mappings is
very closely related to the Molien function (see Jarié
and Birman®) which counts the number of completely
symmetric invariant tensors of each order. The Molien
function has been calculated by Jarié and Birman for
various space groups. Let us calculate the function
(4.1) in the case G =0(3). First note that the determi-
nant of the direct sum A @ B of two matrices is det AP B
= (det A)(det B); for the determinant of an operator
is the product of its eigenvalues, and the eigenvalues
of ADB are the union of those of A and of B, Therefore

detd -22a,L) = I [det( — zT )] >,
where [ on the left is the N XN identity matrix (N =dimI)
and the I’s on the right are the V,x/V, identity matrices
(N,=dimT,).

It remains to calculate det(I - 2T")) for the irreducible
representations O(3). We first carry out the calculation
for SO(3) and then indicate the modifications which
must be made to treat O(3). Let g be a rotation through
an angle 6. The eigenvalues of D'(g) are then exp(+im®,
m=-1,...,1, and therefore

det(l - zD') = I_"I_, (1 - zexp(im8)) (1 - z exp(- im8))

m=0

= < 111 (1~2zcosmb + 22)) .

The invariant integral for SO(3) is

1f~
;'/'U (1 = cosH)d6

and so our expression for (4.1) is
T

M(SO(3);1";Z):%f

. 111 I1(1-2zcosmb + z2)%1

m=0

X ; a;x,(8)(1 — cosb)do
“T | m=0

r 1
:—lf IT T (1-2zcosm@ + z2):

x; a,x,(6){1 — cos8)de,

which can be evaluated by residues.

(4.4)

As to O(3) there are two types of representations,
positive and negative, which are closely related to
those of SO(3). (See Miller,'” p. 249). When g is a pure
rotation, D}(g)=D!(g)=D¥g); but when g is a rotation
reflection, Di(g)= - D!(g)=D'(g). The negative repre-
sentations thus contain the inversion v — —v. Since the
spherical harmonics satisfy Y.(8,1)=(-1)'Y (7 -9,

7 + @) the subspaces V' transform according to positive
representations for even I, and negative for odd I. In

1725 J. Math. Phys., Vol. 19, No. 8, August 1978

order to correct (4. 4) for the case O(3), we cut (4. 4)
in half and add another term corresponding to the inte-
gral over the rotation-reflections of the group. For
this portion of the integral the eigenvalues of the re-
presentations are multiplied by a factor of (- 1)’.
Therefore, the correction term is

Lfr [T IT(1-2z(-1) cosmb + 22)™

210 1 m=o

><Zl‘, a; (- 1), (6)(1 - cosb)db.

Now let us turn to algorithms for constructing the
covariant bifurcation equations in the reducible case.
Such an algorithm was given for the case of a finite
group in Ref, 13. Here we present a method using again
the Lie algebra of infinitesimal operators. We look
first at two simple examples, from which the general
algorithm will be clear.

Suppose first that the kernel /V transforms according
to the representation D'® D?, and represent the vector
space /V as linear polynomials in the variables Xgy X41
and ¥y,, v, ,,v,,. We then seek polynomials F, F,, and
Gy, G,1, G, 5 in these variables which transform as D!
and D? respectively. Let J, and J, be the operators
discussed in Sec. 3. We have

J3xj:jxj, J3yj:jyj, JSFj:ij, ch}.:jG}.,
JX; =By Xy X =By, %50,
Jﬁykzﬁz,*ﬂj*n
J*szﬁl,kaw J*szﬁz.:‘Gjﬂ

where 8, ;=[(1 - +j+ 1)

Since F, must have weight 1, we write it as a2 sum
of all possible terms of weight 1. For the quadratic
case we have

Fy=ay,x, +bxpy, + cyxy,

and we require J F, =0, We have omitted such terms
as x;x, and v,y, because D' is not contained in

(D'® D')s or (D*® D?)s. (In fact, D'@ D'=D?*® D' ®D°,
where the first and third invariant subspaces are sym-
metric tensors, and the subspace which transforms
according to D' is antisymmetric. A similar situation
is true in the case D’ D®.) Terms such as x;x, show
up in the representation D'® D'; terms v,y come from
D?® D?; and terms x;y; come from D' D2,

The condition J,F, =0 leads to the equations
sz,l +¢B,,.=0, aBy ot bBy,,=0,

of which there is one solution, Similarly, for G, we
take

Gy=axi+ by, v, + 32 +dx,y, + exyy,

and apply the condition J,G,=0. This leads to the
equations dﬁz'l +eBy,0=0, bB; ,+2¢B,,,=0, and no
restriction on a. We get three linearly independent
solutions in all, so there are four covariant poly-
nomijals of degree 2: one of weight 7 and three of
weight 2. There are therefore four parameters in the
reduced bifurcation equations.

For the second example consider the case that A/
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transforms as 2D, or D' D', In this case choose
variables x,, x,, and v, v,;, and look for polynomials

£, of weight one such that J,F, =0. The reader will
easily determine that there is only one such polynomial,
namely (x;v, ~ x,3,). This may be repeated lwice in the
bifurcation equations, so there are two parameters,
The reduced bifurcation equations are therefore

vy =Alx v, — Xo¥y), Xp= A‘/2(«\'1.\'-1 ~ X)),

Vo =ANGY = Xx), v =By, — X)),

Moo= BV/VZ(XL\‘-I —xXavy), v =Bya - X

The general algorithm now follows. When I'=}q,D}
put N =}a, and choose N different sets of variables
x, v, -+ and N different sets of polynomials F,G,- - .
Each set of variables and polynomials is to transform
irreducibly under the Lie algebra so(3)—with a one—
one correspondance among variables, polynomials,
and the irreducible representations D occurring in T
Each chain of polynomials of a given weight can occur
in any part of the bifurcation equations of the same
weight. Thus, to a, occurrences of D" and b, covariant
polynomial chains of weight v there correspond a,b,
independent parameter in the bifurcation equations—
that is, «,b, independent occurrences of the poly-
nomials of weight v.

5. GRADIENT STRUCTURE OF THE
BIFURCATION EQUATIONS; SIMPLY
REDUCIBLE GROUPS

Suppose that the kernel /{ is irreducible and that the
reduced bifurcation equations take the simple form

(5.1)

As we have already seen, /// must transform according
to an even representation of O(3) [D'(g), where [ is
even), for otherwise the quadratic term is antisym-
metric, In that case Eq. (5.1) possess a gradient
structure, as Busse'® has observed. This gradient
structure is a consequence of a symmetry property

of the 3-j symbols which holds in the more general
context of a “simply reducible group.”

ow + B(uw, w)=0,

Recall that the quadratic terms of the bifurcation
equations are given (for even I) by

F (2 ...,2)=2(-1)" <nlz1 n[zz _;n> 2 B,

(The 3-j symbols vanish whenever Im| >1 or m, +m,
+,+0, hence we may drop the limits of summation.)
Consider the homogeneous polynomial of degree 3

1
Pz . 2= é?_lemZ

restricted to the real subspace of A/ for which
Z,=(~1)"z_,. There we have

1
1 ~
Doy 2) =30 (- 1PF 2,
! 11
=3 2 (’”1 My mg>zm 2, Z .
ml,mz,m3=-l : 1 T2 73

For ! even the 3-j symbols are completely symmetric
in the integers mi,,m,,m,, (Ref. 5, p. 159), and there-
fore
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2 _

azm_Fm(Z-t’ cers 2y

In as much as (5. 1) can be written in the component
form as

oz, +F (2,,...,2,)=0, (5.1°)

we see that these equations possess a gradient structure
and in fact are the Euler—Lagrange equations for the
variational problem

N 1
min 3p,
lzl=1

where

2 1 1

l z ' = mz->z Zmz_m:_zl; (— l)mZmZ_m.
The function p is the third order invariant for the re-
presentation D¥(g) of O(3); that is, p(D*(g)z)=p(z) for
all g O(3). The norm !z |? is the second order invar-
iant. In vector form these invariants take the form
(u,u) and {(B(u,u), ), where { , ) denotes the scalar
product on the vector space /V. The variational pro-
blem is accordingly

min 5 Ble,u),u). (5.2)

{uyud=1

In general, let A/ be a complex inner product space,
T, a unitary representation, and B a covariant symme -
tric bilinear mapping from & xA to /. The trilinear
form Flu,v,w)={Blu,v),w) is always an invariant of
T, as we saw in Sec. 4. Under what conditions, how-
ever, is B(u,u) also the gradient of the function
F@)=%2F@,u,u)? The answer is given in the following
lemma,

Lemma 5.1: Let B, F and/V be as above. Then B is the
gradient of the functional 7 iff the trilinear form ( B(u,
), w) is completely symmetric.

Pyoof: The operator B(u) is the gradient of the func-
tional F(u) if 7(u+eh)=7F(u) +e{Bw),h)+ O(¢). First
suppose the trilinear form {B(u,v),w) is completely
symmetric. Then

Flx +eh)
=F()+ (/D B, x),x) + (Blx,h),x) +{Blx,x),h}]
+ 0e?)
=7 () +e{Blx,x), k) + O(?).

By definition, then, the gradient of 7 is the bilinear
operator B,

The converse is a little harder to prove. By the
symmetry of B,

Flx+eh)=7F ) +e[(Blx,x),h) +2{Bk,x),x)] + O,
whereas, if B is the gradient of 7,

Flx+eh)=Fx)+e{Blx,x),h) + O(&).
Comparing terms of order ¢, we have

{Blx,x),h)={Blx,h),x)

for all vectors x and . Replacing x by x +v in (5.3) and
using the symmetry of B, we obtain the identity

(B(x,9),h)=2[(Blx,h),y) +(Bly,h),x)].

(5.3)

(5.4)
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Interchanging x and & in (5.4), we get
(B, »),x) =3[ (Blh,x),v) +{B(y,x),h)]
=3[(Bl,x),v) + [ (Blx,R),y) +
+{ By, h),x)}]
=5 (B(x,R),y)+ i (By,h),x)

hence {B(v,h),x)=(B(h,v),x)=(B(x,k),y). Conse~
quently, the trilinear form F is invariant under the per-
mutations (12) and (13) and so is completely symmetric.

Summarizing the above discussion, we have

Theorem 5.2: When the kernel // transforms accord-
ing to the irreducible representation D!(g) of SO(3) the
quadratic term in the bifurcation equations vanishes
altogether for [ odd and is the gradient of the third order
invariant if ! is even.

The above theorem continues to hold, with appropri-
ate modifications, in the more general context of simply
reducible groups. Simply reducible groups {S.R. groups)
were introduced by Wigner in 1940, (References for
the following remarks may be found in Wigner® and
Hammermesh,® pp. 151—-59), A group is simply reduc-
ible if

(a) Every element is equivalent (conjugate) to its
inverse (i.e., for every p there is an & such that
p=hp~th).

(b) The tensor product of any two irreducible rep-
resentations contains no irreducible representation more
than once.

Many of the groups occurring in applications
are S.R. groups: the symmetric groups S, and S,, the
quaternion group, the three-dimensional rotation group,
the two-dimensional unimodular group, and most of the
crystal point groups. An immediate consequence of
property a is that all the group characters are real
[since x{g-')=x(¢) and the character is constant on con-
jugacy classes] and so every representation is equiva-
lent to its complex conjugate representation.

The irreducible representations of a compact group
can be classified into three groups: Those which
possess a real matrix representation; those which do
not possess a real representation but which are never-
theless unitarily equivalent to their complex conjugate
representation; and those which are not equivalent to
their complex conjugate representations. Representa-
tions of the first kind are called integer representa-
tions; those of the second are called half-integer
representations.

Lemma 5.3: The tensor product of two integer
representations or of two half-integer representations
of an S.R. group contains only integer representations,
while the tensor product of an integer and a half-
integer representation contains only half-integer
representations.

The proof of this lemma is given in Wigner’s article.®

The tensor product of a representation with itself can
be decomposed into a symmetric and an antisymmetric
part, For a representation 7 denote the symmetric part
of T® T by (T®T)s and the antisymmetric part by
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(T®7T)a. If 7 is an integer representation, the irreduc-
ible parts of (7% T)s are called even representations and
and those in (7®7T)a are called odd representations; on
the other hand, this nomenclature is reversed if T is

a half-integer representation. Wigner has proved that
no representation can be simultaneously odd and even,
but there are integer representations which are neither
even nor odd.

Let the irreducible representations be denoted by D/
and introduce the convention that (- 1)/ =1(-1) if j is
an even (odd) representation and (- 1% =1(-1) if j is
an integer (half-integer) representation.

Theovem 5.4: (Wigner® p. 92) For an S.R. group it is
possible to normalize the 3-j symbols in such a way that
Ji d2 Js , J2 B s
= (=~ 1)/1’12*:’3
Ky Ky K3 Ko Kp Kg
Hence the 3 —j symbols remain unchanged under an even
permutation of the columns but are multiplied by
(= 1)1(=1)2(~1)3 for an odd permutation.

The following is an immediate consequence of
Wigner’s theorem.

Theorem 5.5. Let ( be a simply reducible group and
let DY be an irreducible (unitary) integer representation
of § acting on the vector space /. Let the bilinear map-
ping B be covariant with respect to D?, Then the third
order trilinear invariant (B{u,v), ) is completely sym-
metric if D’ is an even representation and completely
antisymmetric if D/ is an odd representation. Conse-
quently, the quadratic terms of the bifurcation equations
vanish for an odd representation and possess a gradient
structure for even representations.

More generally,

Theorem 5.6: Let T be a unitary representation on a
Hilbert space #/ such that T ™1 contains the identity
representation precisely once. Then there is a convar-
iant n-linear map B/ — /4 which is either completely
antisymmetric or is completely symmetric and the
gradient of a completely symmetric invariant of order
(n+1),

. . n+1 - - .
Proof: Since F(n ) contains the identity represent-

ation once there exists a unique invariant F(x, ...,
x,+1). Define a representation of S,,, by T,F(x,, ...,
Xpot) = F(Xyo11y,  + oy Xget(pr,) TOT 0€S_, . Since the
subspace of invariants is one-dimensional, TUFszF
where A is a character of S ,,. Since the only one di-
mensional representations of the symmetric group are
the identity and alternating actions, F is either com-~
pletely symmetric or completely antisymmetric. The
associated covariant operator B is therefore the same.
Remark: Given the (z +1) linear form F the mapping

B is obtained as follows: Fix x,,...,x, and consider the
linear functional u—~ F(x,,...,x_,u). This may be re-
presented as u— (B(x,,...,x,),u) where B(x,,...,
x,)J€/#. The linearity and transformation properties of

B are readily derived.) Finally, if F is completely sym-
metric, then its gradient is easily seen to be the map-
ping x— (n+1)B(x, ..., x) by the argument of the first
part of Lemma 5.1. Theorem 5.5 may be obtained
directly from Theorem 5.6 without recourse to Wigner’s
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theorem. For if I" is an irreducible integer represen-
tation of a simply reducible group, then it is equivalent
to its contragradient. If T is contained in T'® I pre-
cisely once, then the identity representation is contained
precisely once in I'®3 (R® S contains the identity repre-
sentation precisely once iff R and S are unitarily equi-
valent irreducible representations; see Ref. 13, The-
orem 8.1). If T is an even representation, it is con-
tained in ('3 I')s, hence the third order invariant must
be symmetric, while if T is odd it is contained in

(T ®T)a and the third order invariant is antisymmetric.

In the case of the rotation group Professor L. Green
(School of Mathematies) and I have succeeded in casting
the variational problem in slightly different way. For
even [ we have the Clebsch—Gordan series

DZepti=_piaDitte.. . D0 (5.5)
and the associated representation
UA =D'/?(g)AD'/?(g™") (5.6)

on (I +1)x( +1) matrices A. This representation is
unitary relative to the inner product

(A,B)=ltrAB* (5.7)

(B* = Hermitian conjugate of B). The third order invari-
ant (there is only one, since D'®D!®D! contains D°
only once) is

HA) =S trA%Ax,

The highest weight space, the one that transforms like
D' in (5.5), consists of symmetric tensors, so we may
restrict ourselves to Hermitian symmetric matrices
and rephrase our variational problem as

min} trA®
subject to
;trA®=1 and trAB,;=0,

where the B, are symmetric matrices which lie in the
lower weight invariant subspaces, In particular
trAl=trA=0. For 1=2, (5.5) reads D'®D'=D?*& D!

@ D"; but the tensors transforming according to D' are
antisymmetric, so we have only the constraint trA=0,
trA?=2., The Euler —Langrange equations are therefore

A2 Ay, (5.8)

where A and I are 3X3 matrices. (The gradient of the
functional 3trA® is the mapping 4 — A?), Equations (5. 8)
can be completely solved as follows.

Taking the trace of (5.8), we get y=2/3. In the case
1=2, Ais a 3X3 matrix and we can choose a rotation
g as that D'{g)AD'(g™") is diagonal, since D'(g) ranges over
over all orthogonal matrices as g ranges over O(3). So,
assuming A is diagonal, we can write (5. 8) as

uf:xui-!-%, i=1,2,3, (5.9)
where (,, i,, 4, are the eigenvalues of A. The
constraints are

P i+ =2, (5.9a)

U+l =0, (5.9p)

There are two sets of solutions to (5.9), (5.10); viz.,
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1/v3 0 0

r=-1/V3, A=l 0 1/V3 0
0 0 -2/3
and
-1/V3 0
A=1/V3, A= 0 -1/v3 .
0 0 2/V3

The order of the eigenvalues on the diagonal is im-
material, for any permutation of the diagonal entries of
A produces a point on the same orbit. Indeed, any such
permutation is accomplished by the operation PAP™
where P is a permutation matrix, and such a P is an
element of O(3). One of the orbits above gives the
maximum of the functional 3 trA?® on the sphere 3trA?=1,
the other orbit is the minimum. The isotropy subgroup
in each case is O(2) (rotations which leave (3) invariant),
s0 each extremal is axisymmetric.

The results above were obtained jointly with
Professor L., Green. The method, while quite straight-
forward in the case [ =2, becomes extremely compli-
cated already in the case { =4 and so does not seem to
be a practical approach to the resolution of the bifurca-
tion equations (5.1) in the general case. It is interesting,
nevertheless, to compare this approach with that of
Michel and Radicati’ in their work on symmetry break-
ing problems in physics.

They study the action of SU(») on the vector space
@ of Hermitian traceless matrices A with the inner
product (5.7). It can be proved that there are two
linearly independent trilinear invariants of this action,

viz.,

{A,B,Ct=4Vn tr(AB + BA)C, [A,B,C|=-%itr[4,B|C

with {, , } completely symmetric and [, , ] completely
antisymmetric. The bilinear form (5. 7) is the only
second order invariant. From this it can be concluded
that there are only two linearly independent algebras on
A with SU(») as automorphism group. One is the Lie
algebra whose multiplication law is
xAy = - zilx,y]
and the other is that with multiplication law
xVy=3n (xy +yx) - (1/Vn)trxy.

Michel and Radicati are led to study the equation
[(I11,17), p. 194 of Ref. 7]

gvq+N(glg=0,

where NV{y) is a real number. Equation (5. 10) is pre-
cisely equivalent to (5. 8).

(5.10)

6. EXTREMAL METHODS AND STABILITY OF
BIFURCATING SOLUTIONS

Having shown in the previous section that the reduced
bifurcation equations sometimes possess a gradient
structure as a consequence of their symmetry, we
investigate in this section the relationship between the
extremal properties of solutions and stability of the
bifurcating solutions. Let us again assume ¢ is a solution
of the reduced bifurcation equations (5.1}, The Jacobian
of these equations at v is the linear operator
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J (vx =ox +2B(x,x).

We know from Theorem 2.3 that the stability of the
bifurcating solutions is determined by the eigenvalues
of the linear operator J, (v). Now suppose B is the
gradient of the functional

F@)=3{Blv,v),v)
and that » is the extremal of the variational problem

max_7#(v). 6.1)

{v,v)=1
We calculate the second variation of the variational
problem at ». Let x(¢) be a curve on the unit sphere
such that x(0)=2. Then, if 7() attains a maximum at
v,

%}’(x(t)): (B(v,v),%) +2(B(v,x),x)< 0

and

B,
FE(X,X):<U,X>+<A,X>:O.

From (5.1), ov + Blv,v)=0, so
- 00, %) +2(Bw,x),x) <0, (ox+2B(v,x),x)<0
for all tangent vectors x and v. Consequently,

(J,()x,x)<0 (6.2)

for all tangent vectors ;c, Furthermore, Ju(v) leaves
the tangent plane at v invariant. In fact, the equation
{v,x)=0 describes the tangent plane at v and also
(B(w,x),v)=(Bw,v),x)=—-0(v,%)=0. Therefore, if
{v,x)=0, then (J ()¢,v)=0 as well, and the tangent
plane at v is preserved. So J,(v) maps the tangent plane
to itself, and (6, 2) tells us J,(v) is negative semi-
definite at a local maximum ». The normal vector to the
tangent plane is v itself, and J (v)v = 0v + 2B(v,v)
=B(v,v)= - ov. Therefore, the remaining eigenvalue
of J (v) is — 0. Since at an extremal v

—o={(Bv,v),v )/ {v,v),

the eigenvalue — ¢ is positive at a positive maximum
of (B(v,v),v). We have proved

Theovem 6.1: Suppose the reduced bifurcation equa-
tions (5.1) have a gradient structure and that a solution
v is obtained as a maximum of the variational problem
(5.2). Then one eigenvalue of the Jacobian J,(v) =0l
+2B(v) is positive and the rest are nonpositive,
Accordingly, from Theorem 2.3 it follows that the
corresponding branch of solutions, which in this case is
transcritical, has one unstable subcritical mode:

/ stable

v
stable \  unstable

\\ unstable

This situation occurs often in bifurcation problems
and is depicted schematically in the above figure, When
the effect of higher order terms is included the sub-
critical branch may “bend back” and regain stability.
Such a situation is called “hard excitation’ in nonlinear
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oscillation theory or “snap through” instability in the
case of buckling theory. The situation depicted in the
figure of Theorem 6.1 can lead to sudden jump dis-
continuities and hysteresis effects as the parameter A
is varied in the vicinity of its critical value.

A similar analysis can be carried through the cubic
case, when the reduced bifurcation equations take the
form

(6.3)

Again, if B is the gradient of the functional $(B(x),x)
then equations (6.3) are the Euler-Lagrange equations
for the variational problem

ox = B{x,x,x)=0.

min { Blx,x,x),x).
{x,x)=1

It can easily be shown, by the same analysis as before,
that the eigenvalues of the Jacobian are always non-
positive at a positive minimum of the quartic {B(x,x,x),
x) on the sphere (x,x)=1. Hence at a positive mini-
mum (which does not necessarily exist) we get stable
supercritically bifurcating solutions. The bifurcations
are one-sided—supercritical positive extrema and sub-
critical at negative extrema. Subcritically bifurcating
solutions are always unstable. (For further results

see Sather, ®)

7. SPECIAL RESULTS

In this section we discuss the special results which
can be obtained by direct calculations for low values
of 1:1=1, 2, 3, 4.

For [ =1 the reduced bifurcation equations are

0z, =az,(22 -2z,z_)),

0z,=az,(2% - 2z,2_,), (7.1)

oz, =az_)(28~2z,2.,),

where the parameter a is to be considered a fixed real
constant. For real solutions we require z,, = (~ I)"z_,,
hence 2} - 2z;2_, =2} +2lz;|*. A nontrivial solution of
(6. 1) must satisfy

22+21z,1*=0/a, (7.2)

from which we see that 6/a must be positive. Therefore,
the bifurcation is supercritical (c>0) if 2> 0 and
subcritical if @< 0. The full set of solutions of (6.1) is

(7.3)

The eigenvalues of the Jacobian are constant on orbits
and are most easily evaluated at z,=Vo/a, z,,=0;
they are 0, 0,- 2), reflecting the fact that the orbit of
solutions is two-dimensional. Since the Jacobian is not
invertible, the implicit function theorem cannot be
used to continue solutions of the reduced bifurcation
equations to the full equations. One can a fortiori
restrict oneself to a subspace of axisymmetric solutions
where the problem reduces to bifurcation at a simple
eigenvalue; but the question remains as to whether all
solutions of the full bifurcation equations are obtained
in this way. The case /=1 arises in spherical convec-
tion problems when the inner and outer surfaces are
free surfaces (Chossat,® p, 19).

zo=Va/acosh, z, =xvV0/2asinb exp(ziop).
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Now let us turn to the case [ =2, which was first
treated in full by Busse® and in Sec. 5 of the present
paper. The reduced bifurcation equations are (setting
o/a =1 without loss of generality)

2,=(2V2 /12,2, - V3/12%),
z,=(-2V1/14z,2,+2V3/72,2_,),

2= (=V2/M22+2V1/14z,2_ + 2V2/T2,2 ),
z., = (=2V1/14z 2, +2V3/Tz,,2,),
2,=(2V2/M2 42, - V3/72%),

(7.4)

This system of equations is already quite complicated
(and is destined to get worse). However, one can obtain
a special class of solutions by setting z,, =0 and taking
z, to be real. The equations then reduce to two equations
in two unknowns (since z_,=z,), viz.,

2,=2V2/T2,2,,
zo=-V2/125+2V32 /123,
Two solution sets are

z,,=V 21/16, 2,,=0, z,=V7/8

(7.5)

+

and

Z,=2,=0, z2,==-Y1/2. (7.6)

One can evaluate the third order invariant p,(z) =%
szE; at the two solutions (properly normalized) and
one finds p, = V2/7 for the first solution and — V2/7

for the second. Thus these two special solutions lie on
the maximum and minimum orbits of the functional p.
The Jacobian of the reduced bifurcation equations can
be calculated and its eigenvalues determined. We omit
the details, but the eigenvalues in both cases are
[3,3,-1,0,0]. Again, both orbits are axisymmetric,
Due to the presence of the zero eigenvalues the implicit
function theorem cannot be used directly here, but there
is an alternative method. Let us restrict ourselves to
solutions with the reflection symmetry property z_
=(-1)"z,. Then all solutions have real values z,.
Under those conditions the last two equations of (6.4)
are identical with the first two. More generally,

Theovem T.1: Let the general bifurcation equations
F(z,... z,) =0 be restricted to the subclass of solu-

tions with the symmetry property
z, =(-1"z_ . (1.7

Then F_ (z_,,...2,)=(-1)"F (z_,...2,) and the bifur-
cation equations to (I +1) real equations in ({ +1) real
unknowns.

Proof: The reality condition z_ =(~1)"z__and (7.7)
imply that z_is real. Furthermore, the bifurcation

equations satisfy
F (2, .,2)=(=1"F_ (z,...,2),

F (z,...,5)=F(2,...,2,).

(7.8)
(7.9)

The property (7.8) following from the reality condition
(3.86) and (7.9) being a consequence of the fact that all
coupling coefficients are real. (They are obtainable by
the Lie algebra methods outlined in Sec. 3.) Combining
(7.7, (7.8), and (7.9), we obtain
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F_m(-’.zm'")__.(_1)mFm(u-.zm"')
=(=1)"F (-+-2," ).

Therefore, the last ! equations coincide with the first
I when z__ is replaced by (- 1)"z

e

We omit the details, but if one computes the Jacobian
of the first three equations of (7.4) at the special
solutions (7.5) and (7. 6) he obtains an invertible
operator. Therefore, all solutions of the bifurcations
can be obtained by solving the reduced bifurcation
equations and applying the implicit function theorem
when the restriction (7.7) is in force. A similar situa-
tion prevails in the case I =4. I conjecture that it is
valid for all even .

For [ =3 there are two distinct covariant terms.
They are obtained as follows. We must take F; to be

— 2
F,=az5z_,+b2,2,2_ ,+C252,2,

2 2 3
+dzyzg tez,2,20 % fooz_, + g2,

Applying the condition J,F,=0, we are led to the system
of five equations in seven unknowns:

(8, 8, 0 0 0 0 O|[d]
0 B, B O 0 28 O]
0 0 B, 28 B 0 0]jc
0 0 0 0 B B, 0]||d]|=0,
[0 0 0 0 5 0 38
f

where 8,=V@-m)@+m+1).

One solution is obtained by taking g=0 and d=1. Then
e=f=0 and we get

Fy=24(2% = 22,2, +22,2_, - 22,2_,).

The quantity in parentheses is the second order invar-
ant, and so is annihilated by the application of any of
the J operators., Therefore, one mapping is

2
F,=2,(25-22,2., +22,2 5~ 2232 5).

A second choice is g#0, d=0. The choice g=v7 leads
to

G,=9V60/7222_, - 9V60/T2,2,2_,
+3V602,2,2_, - 3V102,2,2,
+(30/V7T )22z, + VT 2.

The lower weight polynomials are obtained by
successively applying the lowering operator J_.

The general reduced bifurcation equations in this case
take the form

Az, =AF _+BG,,

where the parameters A and B depend on the external
physical parameters of the problem. Such a situation
occurs in the Bénard problem and gives rise to
mechanisms for pattern selection.!*

!l =4: The quadratic terms in this case are
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F,=(1/V5)z,2, - (1/V2)z,2, + (3/2V14)22,
F,=(1/V2)z,2., - (3/2V5)z52, + (1/ V14)2,2,,
=(3/V14)z,2., - (1/V14)z,2., ~ (11/14V5)z,2,

+(3/7V2)22,
=(1/V2)z,2.5+ (1/V18) 2,2, - (6/TV2)2p2.,
+(9/71V20)z2,2,,

=(1/V5)z,2.4 + (3/2V5)z,2_4 - (11/14V5)z,2_,
~(9/14VB)z,2_ + (9/14V5)22,

The remaining polynomials are found from those above
by the relationship F_ (z_,,...,2,)=(-1)"F,(2.4,...,

z,)=(-1)"F _(--+(-1)"z__--+). There are many possiblje
[~ o 0 0 0 V3/14 0
0 -5/2 0 0 0o 5/V7
0 0 -25/14 0 0 0
0 0 0 -5/14 0 0
J-I=1V5/14 0 0 0 2/7 0
0 5/2V7 0 0 0 -5/14
0 0 15/14 0 0 0
) 0 0 5/2vV7 ] 0
0 0 0 0 V5/14 ¢

The eigenvalues of this matrix can be determined by
restricting the matrix to certain invariant subspaces
(determined by inspection), as follows. Let e, denote
the column vector with a 1 in the ith row and zeros
everywhere else. The subspaces {ae,; + be,}, {e, +eg},
{ae, + be, +ce,}, {ae,+be,}, {ae, + be,} are all invariant,
and one has to calculate the eigenvalues at most of a
33 matrix, The complete set of eigenvalues is

{0,0,0,-20/7, —20/7, -20/7, -5/7, ~5/7,1}.

Since only one eigenvalue is positive, this octahedral
solution is a possible candidate for the maximum of the
extremal problem. The axisymmetric solution above,
however, is definitely a saddle point of the variational
problem; the eigenvalues of the Jacobian are

{0,0,20/9, 20/9, 10/3, 10/3, ~5/9, = 5/9, - 1}.

Busse’s article also contains a discussion of the situa-
tion for higher values of [, and special solutions are
given for /=6, 8, His special solutions belong to one of
two classes (besides the axisymmetric solutions):

2,#0, 2, 2,,#0, 31<n<3l, (7.10a)
z,=0 otherwise;
2,#0, z,#0 for a single n>1/2, (7.10b)

2, =0 otherwise,

The axisymmetric solutions never give a maximum
except in the case [ =2

8. APPLICATIONS

Convection problems in spherical geometries arise
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solutions to the bifurcation equations in this case. Busse
has found two special solutions:

(1) Axisymmetric solutions: z, =-+-=2,=0, zo¢0
and (2) octahedral solutions: 24_2_4_ 5/V14, z,=V5
2z, =2,,=2,,=0. Busse conjectures, on the ba51s of
numerical work, that the second solution is the one
which maximizes the third order invariant, An analysis
of the Jacobian shows that the axisymmetric solution is
a saddle point and that the octahedral solution is a
candidate for the maximum.

The Jacobian of the reduced bifurcation equations (we
set 0=1 and drop the normalization condition [z]=1;
the results are affected only by a possible change of
scale) at the special solution z,= V5, z,=2_,=5/V14,

By =2,=2,;3= 0is
0 0 0
0 0 0
15/14 0 0
0 5/2V7 0
0 0 v5/14
0 0 0
-25/14 0 0
0 -5/2 0
0 0 0

I
naturally in geophysical problems and have been dis-

cussed by many authors (Chandrasekar,'® Busse,*
Chossat'®). Convective phenomena in fluid media are
generally modeled by the Boussinesq equations, which,
in dimensionless variables, take the form

du

37 +u-Vu=24au- 9 + g, (r )9r+ewu><};, (8.1)
aai ( 6+ap,(rlu-r)y-u-ve,
diva =0,

where u is the fluid velocity field, 6 is the temperature
perturbation, p is the hydrodynamic pressure, and
r:xf+yf+ zk is the position vector. Pr is the Prandtl
number and x is the Rayleigh number; g,() is the gravi-
tational field and B,(») is the steady state temperature
gradient. The term wuX# is the coriolis term due to
rotation of the fluid. The operator ux#% breaks O(3)
symmetry, as it is only invariant under rotations about
the & axis.

In geophysical applications these equations are con-
sidered on a spherical shell /<< 1 with appropriate
boundary conditions. When both surfaces are free, the
kernel of the linearized equations contains the space
V! (which transforms as D') (Chossat,'® p. 19), When
both surfaces are rigidand /V is in the vicinity of 0,3 the
kernel of L, for the critical value of ) transforms as
D?; but, as N/ = 1, the kernel of L, transforms as D'
for higher and higher values of { {Chossat, personal
communication), Chossat’s thesis contains an extensive
discussion of the linearized eigenvalue problem for the

D.H. Sattinger 1731



Boussinesq equations (7.1) in a spherical shell, and
also discusses the effect of the symmetry breaking term
wu Xk on the bifurcation point. Depending on the sign of
w, one gets either a bifurcation of stationary solutions
or time periodic solutions.

The buckling of perfectly spherical shells has also
been the subject of much investigation. (See esp.
Sather.®12) Many of the investigations have been limited
to Axisymmetric buckling, as in Bauer, Keller and
Reiss.!! This restriction is certainly justified if
kerG (0,0) transforms as D} for I =1,2; but already in
the case I =4 Busse’s result shows that the axisym-
metric solutions are generally not the relevant bifurca-
ting solutions. If the equations of elasticity exhibit the
same behavior as is supposed for the convection
equations—that is, if kerG,(0,0) transforms D' for
higher and higher ! as A/~ 1—then the bifurcation prob-
lem for higher values of I is also of interest in buck-
ling problems. Actually, experiments on the buckling of
very thin spherical shells indicates that this is precisely
the case,

Finally, the symmetry breaking problems studied by
Michel and Radicati’+® also lead directly to the analog
of the reduced bifurcation equations (5.1) but with
S0(3) [or SU(2)] replaced by SU(3).

APPENDIX

Let us derive the expression (4.3) for the generating
function for the characters x, (g) of (I‘ )s. Fix the
group element g and let the elgenvectors of " on V be
e,...,e, with eigenvalues 1,,...,x,. The vector space
(V®)s is spanned by the vectors (e:,®- - -®ey,)s, which
we may represent as

W:E ei0(1)®‘ ‘ -®eia(1‘)'

The action of T®" on w is simply Py = PHESRRP LT R
where m, + -+ - +m,_ =n. Thus a vector in (V®")s may
be represented by 1ts occupation numbers m,,...,m,
(where m, = times e, occurs, and so forth). The trace
of I®" is therefore

Xem &)= trT®n(g)= 2,

mytesstm =n

A;"l .o 7\:"7‘.
Multiplying by 2" and summing, we get

i)'Zrlx(rz)(lg) E Z

n=0 =0 miyeesetmyen

(zx ). (27\,)""
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Consider the system of stochastic functional differential equations

x' (tvw) = f(txx(t)w)x x:(m)’w)r xzo(w) = ¢0(‘")1

where f(t,x(t,0), x,(w),w) is a product measurable n-dimensional random vector functional whenever
x(t,w) is a product measurable random function, and it satisfies the desired regularity conditions to
assure the existence of solution process. By developing systems of random differential ineqgualities, very
general comparison theorems_in the framework of a vector Lyapunov function are obtained, and,
furthermore, sufficient conditions are given for the stability of solutions in probability, in the mean and

with probability one.

1. INTRODUCTION

The stability analysis of stochastic functional
differential systems has been the subject of many
investigations.!~'® Most of the stability analysis of
stochastic functional differential system is centered
around the stability analysis of stochastic functional
differential systems of Ito type?® 7 and functional dif-
ferential sytems with Markov coefficients!™:!° in the
context of single or scalar Lyapunov functionals or
functions. However, the stability analysis of stochastic
functional differential systems with nonwhite excitations
is remained unattempted.

Very recently, by developing very general compari-
theorems for Itd type stochastic ordinary!!s'?
and functional® " differential systems, and for
ordinary* and functional®® differential systems with
Markov coefficients in the context of deterministic
differential inequalities, and for stochastic ordinary
differential systems with nonwhite noise coefficients!®
in the context of random differential inequalities,
sufficient conditions are given for stability and
boundedness of these stochastic differential systems.
Moreover, it has been demonstrated that the concept
of vector Lyapunov functions and the theory of differen-
tial inequalities are promising tools for undertaking the
stability analysis of deterministic nonhereditary, '
deterministic hereditary,!” and random nonhereditary!®
competitive-cooperative processes in biological,
physical, and social sciences.

In this paper; we initiate the stability analysis of
stochastic functional differential systems with random
coefficients and random delay. We develop the theory
of systems of random functional differential inequalities,
and obtain a very general comparison theorem in the
framework of a random vector Lyapunov function and
systems of random functional differential inequalities,

The paper is organized as follows:

In Sec, 2, depending on the convergence concepts

¥ The research reported herein was supported by SUNY Re-~
search Foundation Faculty Fellowship.
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in probabilistic analysis, we define various notions of
stability. In Sec. 3, we develop the theory of systems of
random functional differential inequalities, The obtained
results extend the deterministic*®*?*° and random non-
hereditary'® results to random hereditary. In Sec. 4,

by employing the concept of random vector Lyapunov
function, a very general comparison theorem in the
context of the systems of random functional differential
inequalities is developed. Furthermore, a general
comparison theorem that is based on a random vector
Lyapunov function and a minimal class of functions is
also developed. All of these results extend the deter-
ministic'®** and random nonhereditary!® results to
stochastic hereditary. In Sec. 5, we apply the com-~
parison theorems that are developed in Sec, 4, to

study stability analysis of random functional differential
systems, Finally, in Sec. 6, some examples are given
to show the usefulness of our results.

2. NOTATIONS AND DEFINITIONS

Let R” denote the n-dimensional Euclidean space with
a convenient norm ||- ]}, We also denote by the same
symbol 1l |i the corresponding norm of a matrix., Let
R, denote the nonnegative real line while R will be
used for real line. Let (?,7,P) be a complete probabi-
lity space. Let S(R*) denote the set of random vectors
defined on (R, 7, P) into R", For x< S(R"), the gth
moment of x is defined by E(llxii?) = [l x{(w)I?L(dw),
0<g<w, For 0<p<e, D=D(0,p,R")=1{xc R": ilxi< p},
and DSR™) =D(0,p,SEN) ={xc SRMuix(wi<p
with probability one}. Given 7> 0, let C"=C[[~ 7,0],
R"] denote the space of continuous functions defined on
[~ 7,0] into R, and let S(C")=C[[- 7, 0], S(R")] denote
the space of almost sure sample continuous random
functions with domain - 7, 0] and range in R". For
pe (", we define Il ¢l =sup_ . .,lld(s). Let (-)T
stand for the transpose of a vector or a matrix.
Suppose that C[[~ 7,%),R"]. For {> 0, we shall let x,
denote the translation of the restriction of x to the
interval [# - 7,¢]; more specifically, X, is an element
of C" defined by x,(s)=x(t+s), —T<s<0. C[[-7,),
S(R")] can be defined, similarly, and x,(w)e S(C" is
defined by x,(w)=x{¢ +s,w), -T<s<0. (1=C[[-7,0],
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R1], S(CY), C=C(0,p)={pcC: 1¢li,<p}and S(C)=
=5(C(0,p))={p c S(C(M: ¢, < p with probability one}.
AC[R,, S(R™)] denote the set of all almost surely
absolutely sample continuous random functions defined
on R, into R*, We shall mean by M[R,x DXC, S(R")]

the class of random functionals f{t,x,x,,w) defined on
R,XDxC into R" such that f(¢, x(¢, w),x,(w), w) is product
measurable whenever x{{,w) is product measurable.

Consider the system of stochastic functional
differential equations of the type
X't w)=flt,x(t, 0),x,(w),w), ¥, (@) = d,(w), 2.1)

where fe M[R,xDxC, S(R"], and f is smooth enough to
guarantee the existence of a sample solution process
x(t,w) =x(ly, $ )¢, w) of (2.1) for ¢>£,. For existence
and uniqueness theorems, see Refs. 1 and 2.

We shall assume that f(/,0,0,w)=0 with probability
one, so that the system (2.1) possesses the trivial
solution process x(¢,w)=0 with probability one (w.p.1).

Depending on the mode of convergence in the pro-
babilistic analysis and stability definitions for ordinary
stochastic differential systems,® we shall formulate
some definitions of stability.

Definition 2,1: The trivial solution of (2.1) is said
to be:

(SP,) stable in probability, if for eache>0, >0,
{,€ R,, there exists a 6 =58(,, ¢,n)> 0 such that

Plo: sup [1oy(s,w)ll > 0p<7

~TEss
implies
Plo:|lx(ty, d ), wlll= ef<n, (=t

(SPZ) asymtotically in probability, if it is stable in
probability and, if for any ¢ >0, n>0, t{,c R, there
exist 8,=0,(¢,) >0 and 0< T = T(¢,,e,n) such that

P{w: sup [lo,(s,w)ll>6,4<n

~r<5<0
implies
Plw. lix(t,, o)t llzer<n, (=t,+T;

(SM,) stable in the mean, if for each e>0, f,c R,,
there exists a 0< 6=5((,,¢) such that the inequality

B Ellloy(s,w)ll]< 6
implies
E[llx (o, )t )1 <€, £=

(SM,) asymptotically stable in the mean, if it is stable
in the mean and, if for any ¢> 0, { < R,, there exist
positive numbers 6,=5/({,) and T=T({,,e) such that the
inequality

sup I’:[”d)()(s,(.l))”]§ 6()

~T<gx(
implies
Elllx(to, o)t 0] <e, L= t,+T:

(SS,) stable with probability one (or almost surely
sample stable), if for ¢> 0, {;cR,, there exists a
positive number 5 = &(/,,¢) such that the inequality

1734 J. Math. Phys., Vol. 19, No. 8, August 1978

sup ¢ (s,wlll<d w,p.1
~T<gs0

implies
”x(loy ({bo)([, wllf < €, (2L, W.p. 1;

(8S,) asymptotically stable with probability one (or
almost surely sample asymptotically stable), if it is
stable with probability one and, if for any ¢> 0, [, R,,
there exist positive numbers 6,=8,(¢,) and T =T{,,¢)
such that the inequality

sup ¢ (s, w)ll <8, w.p.1

T€g<0
implies
Mx(z,, d )t w)l[<e, t=t,+T w.p.1.

Definition 2.2: The trivial solution of (2.1) is said to
be:

(USP,) uniformly stable in probability, (USM,)
uniformly stable in the mean, and (USS,) uniformly
stable with probability one, if the 6’s in Definition 2.1,
(sP,), (SM,), and (8S,), are independent of ¢,
respectively;

(USP,) uniformly asymptotically stable in probability,
(USM,) uniformly asymptotically stable in the mean, and
(USS,) uniformly asymptotically stable w.p.1, if (SP,),
(SM,) and (8S,) hold, and the corresponding 6’s and T’s
in Definition 2.1, (SP,), (SM,), and (SS,), are indepen-
dent of {,, respectively.

Based on Defintions 2.1 and 2,2, one can formulate
other definitions of stability and boundedness,!!'®
analogously.

Consider now the following stochastic auxiliary
functional and ordinary differential systems:

w ity w)=glt,ult,w),u,(w),w), “zo(‘*’) =0,(w) (2.2)

and

W (tw)=glt,ulf,w),w), ully,w)=ulw), (2.3)

respectively, where g in (2.2) belongs to LC|R, xR™
X(m S(E™], LC{R,XR™x(™, S(R™)] stands for the class
of random functionals g(f,0(0), o,w) defined on R, XR™
x(™ into R™ such that g(/,c(0),0,w) satisfies the
Caratheodory condition in (#,0(0),0¢) for all most all
wEQ, i.e,, g(t,0(0),0,w) is continuous in (0(0),0) for
each t€ R, and Lebesgue measurable in / for each
fixed (0(0),0), with probability one, and there exists a
product measurable random function K: R, XQ—~ R,
which is summable on R, w.p.1 such that ;g(t,0(0},0,
w)it = K{f,w) for 0= C(0,p), 0<p<= w.p.1; g(,0(0),
o,w) is quasimonotone nondecreasing in ¢(0) and
nondecreasing in ¢ for each fE R, w.p.1; ¢ in (2.3)
belongs to LC[R XR™, S(R™)], and g¢ satisfies the
Caratheodory condition in (f,2) w.p.1; g/, 1, w) is
quasimonotone nondecreasing in x for each [ © R,
w.p.1l. Under these conditions, existence of maximal
and minimal solutions w.p.1 can be shown analogous
to the deterministic case® with simple modifications.
Let «(l,w)=ully,0,)(,w) and u(l,w)=ull, [, u,,») be any
solutions of (2.2) and (2. 3), respectively.

Relative to auxiliary differential systems (2.2) and
(2.3), we need to define the corresponding stability
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definitions in our discussion, that may be defined,
analogously. For example, we state the definition

of stable in probability (SP¥) with respect to (2.2) and
(2.3), respectively.

Definition 2.3: The trivial solution of (2.2) is said to
be stable in probability, if given e>0, n>0, {,€R,,
there exists a positive number § =5(¢,,¢,7n) such that

m
Plw: sup 20,,(s,w)>6}<n
-TS$%0 {al

implies
m
Plw:2u,(t,, ), w)=ef <n, t>t,.
{=l

Definition 2.4: The trivial solution of (2.3) is said to
be stable in probability, if givene>0, n>0, {,€R,,
there exists 5 =5(¢,,e,n) such that

Plw:2u,lw) > 6} <n
ial
implies
Plw: u,(t,w)=€eh<n, t=4.
i=1

Definition 2.5: A function b(r) is said to belong to the
class K if b€ C[R,,R,], b(0)=0, b(r) is strictly
increasing in 7.

Definition 2.6: A function b(») is said to belong to the
class VK if b C[R,,R,], b(0)=0, b(») is convex and
strictly increasing in ».

Definition 2.7: A function a(t,v) is said to belong to
the CKif a€ C[R,XR,,R,], a(t,0)=0, and a{t,¥) is
concave and increasing in » for each fixed t€R,.

Definition 2.8: Let G be a function defined on R" into
R™, The function G is said to convex if each component
G, of G is convex for 1 <i<m, and G is said to be
concave if - G, is convex.

In order to avoid monotonicity, hereafter, it will be
understood unless otherwise specified, that all
equalities, inequalities, and relations that involve the
random processes will hold with probability one,

3. RANDOM FUNCTIONAL DIFFERENTIAL
INEQUALITIES

In this section, we shall establish the result that will
be widely useful in the qualitative analysis of random
functional differential systems of the type (2.1).

Theorem 3.1: Assume that:

(i) g€ LC[R,XR™ xCm, S(R™)], g(t,0(0),0,w) is
quasimonotone nondecreasing in o(0) and nondecreasing
in ¢ for each fixed t€R, w.p.1, and v{t,w) =7{t,,0,){¢,w)
is the maximal solution process of the system of random
functional differential equations (2.2) existing for
tzt, w.p.1;

(ii) m < AC[[~7,%), S(R™)], and m(¢,w) satisfies the
inequality
m'(t,w) < glt,mt,w),m,W),w) (3.1)

almost everywhere on (f,w) € (f,,=) X8,
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Then,
mto(w)soo(w) w.p.1 3.2)

implies
mit,w) < rlty,0.)t,w), t=4 w.p.l. 3.3)

Proof: For any i€1=1,2,...,m, we define a func-
tional

g,‘(tyoy(O)’U,w):gi(tya(o):aaw): (3°4)

where 0c (™, m,(w)<&(Ww), and for j€I, se[-7,0]

5,(s9w):{cf(s’w)’ if m,(s,w)<a,(s), (3.5)

my(s,w), if m,(s,w)>0,(s).

It is easy to see that g(¢,0(0),0,w)e LCIR R™X(™,
S(R™)] and g(t,0(0),0,w) is quasimonotone nondecreasing
in ¢(0) and nondecreasing in ¢ for each te R, w.p. 1.
Now, the rest of the proof follows by following the proof
of Theorem 3.1 in Ref. 15 with slight modifications.

Remark 3.1: Theorem 3.1 is analogous to the
deterministic Corollary 4 in Ref. 20 in the context of
Remark 3 in Ref. 20. Furthermore, it is a direct
extension of Theorem 3.1 in Ref, 15,

Remark 3.2: If, in Theorem 3.1, the inequalities
(3.1) and (3.2) are reversed, then the conclusion (3,3)
is to be replaced by

mlt,w) 2 plty, o)L, w), t2¢, w.p.1,

where p({,, 0,)({,w) is the minimal solution process of
(2.2) existing for t= ¢, w.p. 1.

4. COMPARISON THEOREMS

In this section by employing the concept of random
vector function,® the systems of ordinary random
differential inequalities’® and the systems of random
functional differential inequalities, we develop com-
parison theorems for the system of random functional
differential equations (2.1). These results are not only
useful in studying the qualitative properties of (2,1),
but also useful for obtaining qualitative information
of hereditary competitive-cooperative processes in
biological, physical; medical, and social sciences,
under random environmental as well as structural
perturbations.

where

Let the function Ve L[[-7,=)xD, S(R™)],
L[[-7,%)xD, S(R™)] stands for the collection of random
functions V(¢,x,w) defined on [= T,=)XDXQ into R™
such that V(¢,x,w) is locally Lipschitzian in (¢, )
eR XD w.p.1. We define a vector

Do 1, Vt, 9(0), 0, w)

~lim sup%[V(/ i, $(0) + I, p(0), &, ), )

h-0*
- V(t’ (}’)(O),OJ)]

for ({,¢)c R, xC. We note that, because of the assump-

+

tions on V, D, ,,V(¢, ¢(0), ¢, w) is a product measurable
random vector,

4.1)

Here and after, we shall assume that g in (2.2), g
in (2.3), and the functions V and D}, ,,V (¢, $(0), ¢, w)
satisfy the following hypotheses:
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(H)) ge LC[R,XR™ XC™, S(R™)], g(t,0(0),0,0) is
quasimonotone nondecreasing in 6(0) and nondecreasing
in o for each fixed t= R, w.p. 1.

(H,) Let 7(¢,w)=r(t,, 0,)(¢,w) be the maximal
solution process of the auxiliary random functional
differential system (2.2) existing for £ > £,.

(H,) Assume that g({,0,0,w)=0 almost everywhere
(a.e.) on R xQ,

(H,) Ve L[[- 7,)xD, S(R™)], and for each (¢, ¢)
€ R, XC, it satisfies the relation

Dz, Vit 000), ¢, w)< glt, V(E, $(0), w), V (w),w) (4.2)
w.p. 1, where V(w)=V(t+s, d(s),w) for se[-7,0].

(H;) Assume that the hypothesis (H,) holds except that
the inequality (4, 2) is replaced by

Alt,w)Dy L, V(E, $(0),0,0) + A%, W)V (¢, $(0),w)
<glt,Alt, )V, d(0),w), (AV),(w),w),

where A(f,w) is m Xm random matrix function whose
elements a,,(¢,w) belong to L[[- 7,%), S(R)]; A™\(¢,w)
exists, w.p.1, and A"1({,w)A’(t,w) is product measur-
able and its off-diagonal elements are nonpositive w,p.1

(4.3)

on R,; (AV)(w)=Alt +s,0)V(t+s,¢(s),w) for se[-7,0].

(H,) g CIR,XR™, S(R™)], gl(t,u,w) is quasimonotone
nondecreasing in # for each fixed {< R, w.p. 1, and it
satisfies the relation ig(f,u,w) < K(¢,w), where K{f,w)
is a sample continuous random function.

(H,) Let v(t,w)=7{¢,£,,u,,») be the maximal solution
process of the auxiliary random ordinary differential
system (2. 3) existing for ¢ ¢,.

(Hy) Assume that g(¢,0,0)=0 on R ,XQ w.p.1.

(H) Ve L[{- 7,=)xD, S(R?)] and for each i< I and
(£, 0)e R, XC such that ¢ < Q,,, it satisfies the relation

A (t,w)DG, 1, VIE, 0(0), &, w) + AL, w)V(L, (0),w)
< g,(t, Alt, w)V(t, $(0),w),w)

w.p.1, where A(f,w) is as defined in (H;); @, is defined
by

(4.4)

Q,={¢ecC: [ (A,V) () lo=4,(,w)V(, $(0), w)},

and A,(f,w) denotes the ith row of the random matrix
Al w).

(H,,) For (¢{,x)e [~ 7,2)%XD

bl < 2 V,(t,x,0) < alt, ixl),
HS )

(4.5)

where b, alt,")c K.

(H,,) For {t,x)e[-T,%)xD, (4.5) holds with hc VK,
ac CK,

(H,,) In addition to hypothesis (H,,), we assume that
alt,vY=alr).

(H,,) Assume that (H,;) holds with a(t,r)=alr).

On the basis of the result developed in the preceding
section, we now prove the following comparison
theorem which plays an important role in the qualitative
analysis of solutions of random functional differential
systems.
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Theovem 4.1: Let the hypotheses (H,), (H,), and (H,)
be satisfied, Further assume that for any sample solu-
tion process x(t,, ,)(t,w) =x(¢,w) of (2.1) with ¢, S(C)
and

Vto(cu)s Oo(w), (4.8)
Then
V(t,x(ty, 0)(E, w), w) < 7(ty, 0,)(t, @) 4.7

as long as x(¢,, )¢, w) e D(S(R™) w.p.1 for t=¢,.

Proof: Let x(t,, ¢, }{¢,w) be any solution of (2.1)
satisfying (4.6), and x,(¢,, ¢,)(w) € S(C) w.p. 1 as long
as x(t,, ¢o)t,w)c DS(R™) w.p.1 for t>¢,. Set P(w)
=x,(t,, Po)(w), which implies that ¢(0,w)=x(t,, )¢, w).
Define m(f,w)=V(t,x(t,w),w) so that m(w)=V{t+s,
¢ls),w). Since (4, 6) holds, we have m;,(w) < o,(w).

For sufficiently small >0, we have
m(t+h,0)~mt,0)=V{E+h,x(t+h,0),0) =V, x(w),w)
:V(t +h,¢(0)+hf(t7 ¢(O); (]5,(.0)
—V(L‘,d)(O,w),tu)
FVE+h,x@+h,0),0)
=Vt +n, p0)+hflt, 6(0), ¢,w),w).

This together with the hypotheses and the argument used

in Theorem 4,1 in Ref. 15 yields the inequality
m!(t, w) < glt, m(t,w),m,(w),w) (4.8)

almost everywhere in (¢,w). From the application of
Theorem 3.1, we deduce that

V(t,x(ty, o)t w),w) € v(t,,0,)(t, w)

as long as x(f,w) e D{S(R™) to the right of ¢,. The proof
is complete,

The following variant of Theorem 4.1 is often more
useful in applications.

Theovem 4.2: Let the hypotheses of Theorem 4,1 hold
except (H,) is replaced by (H,). Then, Vi (w) < 0h(w)
implies

Vit x(ty, do)E, w),w) <R, U,)(E,w) 4.9)

as long as x({,w) e D(S{R"), where R(4,,¥,){¢,w) is the
maximal solution process of the auxiliary random
functional differential system

v (t,w) =A™, W)~ A, wo(t,w)
+glt,Alt,whv(t,w), (Av),(w),w)],
Lvto(w):zlio(w) (4.10)

existing for = ¢,.

Pyoof: By following the argument used in Theorem 2
in Ref. 19 and Theorem 4,1, the proof of the theorem
can be constructed, analogously.

Remark 4.1: Theorems 4.1 and 4.2 are analogous
to Theorems 1 and 2'° for deterministic functional
differential systems, and are similar to Theorems 4.1
and 4, 2'® for nonhereditary random differential systems,

Now, we formulate a comparison theorem that is
based on a random vector Lyapunov function and a
minimal subset of C".
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Theorem 4.3: Assume that the hypotheses (Hy), (H,),
and (H,) hold, Further assume that x(¢;, ¢, )¢, w)=x{f,w)
be any solution process of (2.1) such that ¢,< S(C) and

sup Aty +s,w)V({E,+s, P ls,w),w) suyw). (4.11)
“TH3%0
Then,
A, )V, x(t,y, P, w),w) s 7L, ty,u,, w), (4.12)

as long as x(¢,w) € D(S(R™) w.p.1 for ¢=¢,.

Proof: Let x(t,w)=x(t,, ¢,)(t,w) be any solution pro-
cess of (2.1) satisfying (4.11) and ¢,< S(C). Define the
random vector function

mt,w)=Alt,w)V(t, x(t,w),w). (4.13)
From (4,11) and (4.13), it is obvious that
|(AiV)to(w)|0s uolw) for icl, (4.14)

where u,, is the ith component of u,.

For sufficiently small ¢ > 0, consider the system of
random differential equations

u,(t,w)=g,¢,ult,w),w) +e, u,lts,w)=u,w)+e.
(4.15)

Let u{¢,e, w) be a solution of (4.15) existing as far as
7(¢,w) exists to the right of ¢,, where »(f,w) is maxi-
mal solution of (2. 3), Since

lirglu(t,e,w)=r(t,w) w.p.1,
€ -

the validity of the inequality

A, w)V(E, x(t,w),w) < 7(t,w) (4.16)
is immediate as long as x(¢,w) e D(S(R") and
mit,w) < ult,e,w). 4.17)

Our objective is to show that (4.17) is true. If we
assume that (4.17) is false, then

z=.\"J {teR,im,(t,w) 2 u,(t,e,w) w.p.1}

i=1

is nonempty, Let {, =inf z. Arguing as in Theorem
1.5.1%! there exists an index ¢, £, > ¢, and Q,C & with
P(£2,)> 0 such that

Q) m;(t, w)=u,(t,¢,w), weQ,

(i) m; (¢, w)<u;(t,6,w), t[ty,t) and we Q,

(i) m, (¢, w) <t e,w) w.p. 1, £t [t,, 4], i#j.
Therefore

Dm(t,w) = uy(t,e,w)=g,(¢,,ult, 6, 0),w)+ €. (4.18)
Since gl{¢,u,w)>0 w.p.1, u(¢,e,w) is nondecreasing in ¢

with probability one. Consequently, it follows from (i),
(ii), and (iii) that

sup m;(t, +s,w)=m,(t,,w)=u;(te,w), (4.19)
“T€8§<0

and
sup m(t, +s,w) <u,(t,,e,w), i#j. (4.20)

=T%g=0

Setting ¢(w) =2x,,(¢,, $,{w) and noting that ¢(0,w)=
=x(¢,,w), we have
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A7), (@) [o=A;t, 0V, 6(0,0),w). (4.21)

This implies that ¢(w)e S(R,,). Hence, using the
Lipschitzian nature of V(¢,x,w) in x, the relation (4.4),
the quasimonotone property of g{¢,u,w) in %, and the
inequalities (4.19), {4.20), and (4.21), we have the
following inequality:

D’m,i(t“w)$gi(fl,u(t1,6,w),w).

This inequality is incompatible with (4,18), and hence
the set z is emply, which in turn proves the validity
of inequality (4.17). This completes the proof of the
theorem.

Remark 4.2: We observe that comparison Theorems
4.1 and 4.3 differ in the following sense. Theorem 4.1
gives the estimate for the solutions of (2.1) with respect
to the maximal solution of its auxiliarly random
functional differential system (2,2), On the other hand,
Theorem 4.3 gives the estimate for the solutions of
(2.1) with respect to the maximal solution of its
auxiliary random ordinary differential system.

Remark 4.3: We note that estimate (4.12) is equi-
valent to

V(t,x(ty, do)(t, w), w) < R(t,t,,05,w),

where R(¢,t,,v,,w) is the maximal solution of the
auxiliary differential system

vt w) =AMt w - At wht, w) +glt, Alt, )

Xu(t,w),w)] v, w)=1rw)

(4.22)

(4.23)
existing for ¢= {,, and moreover
A, wIR(L, by, vy, w)=7(t, by, Ug,w) (4.24)

with u (w) =A(t,,w)vy(w).

5. STABILITY RESULTS
In this section, we employ the comparison theorems
that are developed in the preceding section, to study

stability properties of the trivial solution process of
(2.1).

In the following, we present a few main results which
are based on Theorem 4.1. The following result estab
establishes the stability properties of (2.1) in the sense
of probability and in the sense of probability one.

Theorem 5.1: Let the hypotheses (H,), (H,), (H,),
(H,), and (H,,) be satisfied. Assume that f(£,0,0,0)=0.
Then,

(1) (SPY) of (2,2) implies (SP,),
(i) (SPT) of (2.2) implies (SP,),
(iii) (SS¥) of (2.2) implies (SS,),
(iv) (SS¥) of (2.2) implies (SS,),

Proof: Let us prove the statement (i), Let n >0,
0<e<p, and f,& R” be given. Assume that (SP¥) of
(2.2) holds. Then b(e), 1> 0 and /,c R*, there exists a
positive number 5, =5,(¢,,¢,7) such that

Plw: ? (b, o) (E, ) = D)< m, 314, (5.1)
icr
whenever
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Plw: sup |20 0,(s,w)|>6,}<n. (5.2)

~T%s%0 {cf

We choose ¢, such that V(¢,+s, ¢ (s,w),w) < 0,(s) and
gam(s,w):a(tﬁs,H¢o(s,w)ll). (5.3)
Since al¢,*) €K, for fixed s € [¢,, - 7,¢,], we can find
6(t, +s,€,m)=08,> 0 such that
Plwzalt, +s,ll¢4(s, D) > 6,1 = Plw:llgyls, w)ll > 5,}< .
(5.4)

Our aim is to choose & which is independent of

se[-7,0]. From the sample continutity of ||d,(s,w)l|

is s for each se [~ 7,0], we can find 5, such that
Plw:ll¢o(6, )l >8,}<n for § e (-1, +s,7,+s)

n[-7,0]

This is true for each s« [- 7,0]. Consider the collection

of open sets in [~ 7,0] defined by

U={0,:0,=(-n,+s, n,+s)n[- 7,0]for sc[-7,0]}.

It is easy to verify that it is an open covering of [~ 7,0]
and hence by Heine—Borel theorem, we can extract a
finite subcover corresponding to s,, s,,...,s, for some
fixed integer k, Take the corresponding numbers

Os,y Osp,...,0s, and set

5= min{éal, B eens 58,,}

Then, we have

Plw: sup alty+s, lloyls,wlll,w)>6,}

~THg&(

= P{w:ws‘up Hpols,wll > 8} <.

%0

(5.4)

‘Now, we claim that (SP,) holds. Suppose that this is
flase, Then there would exist a solution process
x(t,w) of (2.1) with

Plw: sup ligy(s,wll>6}<7n and ¢, > ¢,

~r €3 €0

such that
Plu:flx(t, w)ll = ef=n, (5.5)

and x{¢,w)e DS(R™) w.p. 1 for t< (4, ¢,]. On the other
hand, by Theorem 4.1, the inequality

(5.6)

is valid as long as x(¢,w)c D(S(R") w.p.1. From (4.5)
and (5.6), we have

b(Jlx(t, )< 22V (¢, x(t, w),w)
=1

Vit x(t,w),w) s v(t,w)

<25 7t w). (5.7
HEN

The relations (5.1), (5.5), and (5.7) lead us to the
contradiction
n<Plw: 22 V,(t, x(t,,w),0)= ble)}
i€l
< P{w: 27 7,(t,,w)= ble)} < n.
icr
This proves the statement (i).

The proof of statement (ii} can be constructed by
following the proof of statement (i) and the proof of
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Theorem 5.1 in Ref. 15, The proofs of statements

(iii) and (v) can be formulated by following the argument
used in proofs of statements (i) and (ii), and the deter-

ministic version'® of the theorems. To avoid monotone,
we omit the details,

Covollary 5.1: Assume that the hypotheses of
Theorem 5.1 hold except that (H,,) is replaced by
(H’l*o) for (t;x) S [_ T: °°]XD,

blllxlly <22 V, (¢, x,w) < alt, lIxll, @),
i€r

where b, alt,*,w) € K and a(¢,7,w) is sample continuous
random function in (¢,7). Under this modification, the
conclusions of Theorem 5.1 remain true.

Pyoof: The proof or the corollary follows by following
the proof of Theorem 5.1 directly.

The following result establishes the stability proper-
ties of (2,1) in the sense of first moment.

Theorem 5.2: Assume that the hypotheses of Theorem
5.1 hold except that (H,;) is replaced by (H,,). Then

(i) (SM¥) of (2.2) implies (SM,),
(ii) (SM*) of (2.2) implies (SM,).
Proof: Let us prove the statement (i), Let p>¢e> 0,

t,€ R, be given. Assume that (SM}) holds. Then b()>0
and ¢t,€ R,, there exists §,=10,(¢,,€) such that

sup 2 E[o,,(s,w)] <5, (5.8)
-r€8%0iCJ

implies
23 E[u,(ty, 0)(t,0)]< be), t=t,. (5.9)
S

We choose ¢, such that V{,+s, ¢,(s,w),w)< 0o,(s,w) and
‘}—_‘lE[Go,'(s:w)]:a(to+3,E[”¢o(s,w)“])- (510)
icl

Now by following the argument used in the proof of

Theorem 5.1 or more precisely, the argument similar

to the argument used in Theorem 4.1 in Ref. 8, one

can find a positive number &= 56(¢,,c) such that
sup E[|1¢,(s,w)ll]< o

~“TESK()
implies
alty+s,Elll¢(s,w]< 8,

for s c[- 7,0]. Now the rest of the proof of the theorem
can be completed by using the argument that is used in
the proof of Theorem 5.2 in Ref. 15, Thus completing
the proof of the statement (i).

The proof of statement (ii) can be constructed by
using the arguments that are used in the proofs of
Theorem 4,1 in Ref. 8 and Theorem 5.1 in Ref. 15,

In general, we may not be able to find the auxiliary
random functional differential system (2,2) whose
trivial solution has (SP*), (SM*), and (SS*) properties,
In such case, the comparison Theorem 4.2 is useful in
discussing the stability properties of (2,1). In the
following, we state the results whose proofs can be
constructed by following proofs of theorems in Refs. 8
and 15,
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Theorem 5. 3: Assume that the hypotheses of Theorem
5.1 hold except that (H,) is replaced by (H;). Then,

(i) (SP¥) of (4.10) implies (SP,),
(ii) (SP¥) of (4.10) implies (SP,),
(iii) (SS¥) of (4.10) implies (SS,),
(iv) (SS¥) of (4.10) implies (SS,).

Theorem 5.4: Assume that the hypotheses of Theorem
5.3 hold except that (H,,) is replaced by (H,,). Then,

(i) (SM}) of (4.10) implies (SM,),
(ii) (SM¥) of (4.10) implies (SM,).

In the following, we present two main stability results
which are based on Theorem 4.3.

Theorem 5.5: Let the hypotheses (H,), (H,), (H,),.
(Hy), and (H,,) be satisfied. Further assume that f in
(2.1) satisfies f(¢,0,0,w)=0. Then,

(1) (SP¥) of (4.23) implies (SP,),
(ii) (SP¥) of (4.23) implies (SP,),
(iii) (SS¥) of (4.23) implies (SS,),
(iv) (SS%) of (4.23) implies (SS,).

Pyoof: Let us prove statement (i). Let p>¢>0, >0,
and ¢{,€ R, be given. Assume that (SP}) of (4.23) holds.
Then b(e) >0, n>0, and ¢, R,, there exists a positive
number 6, =6,(¢,,€,n) such that

Plw:27 ug,(w)>8,}<n (5.11)
=

impoiles

Plo: 2u,(t,w)=ble)}<n, t=t,.
i1

(5.12)

We choose u,(w) such that

sup A(t,+s,w)V({t,+s,0.(s,w),w) <u,lw)

-TE€S=<()

and

2 ug(w)=alty, sup [lgyls,w).

HE -r<8<0

(5.13)

Since a(t,, -) € K, we can find a positive number 5=5(t,,
€,7) such that
Plw:alt,, sup llgyls,w)ll)> 5.}

0

TS <

=P{w: sup [I¢,(s,w)ll>6}<n. (5.14)

-TE3%

Now the remaining proof of (SP,) of (2. 1) follows from
the proof of statement (i) in Theorem 5.1. Therefore,
we omit the details. The proofs of statements (ii)—(iv)
can constructed by following the proof of statement (i)
and the proofs of statements (ii)—(iv) in Theorem 5.1,

Theorem 5.6: Assume that the hypotheses of Theorem
5.5 hold except that (H,,) is replaced by (H;,). Then,

(i) (SMF) of (4.23) implies (SM,)
(i1) (SMY) of (4.23) implies (SM,).

Pyoof: The proof of the theorem can be constructed
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from the proofs of Theorems 5.2 and 5.5, To avoid
monotony, we leave the details to the reader,

Remark 5.1: We observe that in Theorems 5.5 and
5.6 the a{t,»)’s in hypotheses (H,,) and (H,,),
respectively, need not have to be defined on [~ 7,)
XR,, instead, it is enough to be defined on R XR,.
Furthermore, a corollary to Theorem 5.5, similar
to Corollary 5.1 can be stated, analogously.

Remark 5.2: Note that one can formulate the results
corresponding to uniform notions under the hypotheses
of the previous results except that (H, ) and (H,,) are
replaced by (H,,) and (H,,), respectively, and the
corresponding notions relative to auxiliary equations
(2.2), (4.10), and (4.23) are uniform,

Remark 5.3: Theorems 5.1 and 5.2 are extensions of
Theorems 5.1, 5.2, and 5.3 in Ref. 15, and are
natural extensions of deterministic results in Ref. 19,
Theorems 5.5 and 5, 6 are extensions and generaliza-
tions of deterministic results in Ref. 21,

Remark 5.4: We also note that our stability results
are local in nature. If, p=o, then D=R", and the
previous stability results would be of global character.

Remark 5.5: We further note that our preceding dis-
cussion includes the discussion of random functional
differential systems of the type

x'(t’ w):F(taxt(w)’w)’ xto(w): ¢0(w)$
where x,(w)=x{t+s,w), y({)<s<0, -T<y({#)<0, and
{y(#):tc R} is a random process defined on (Q, F, P)

into [- 7,0], that is, systems with time-varying random
delays.

6. EXAMPLES

In this section, we shall present some examples that
demonstrate the scope of our results.

Example 6.1; Consider the system of random func-
tional differential equations

2, w)=ft,w)x(t,w) + Flt, x(t - 7,w),w), (6.1)
where

1% _ _f(t’w) 0

x_[x'a’]’f(t,w)—l: XO “fz(trw):ly

f,e M[R,, S(R,)] for i=1,2 and locally sample Lebesque
integrable on R ;

Filt,x(t-7,0),w)
Ft,x(t-1,0),w)= )
F(t,x(t - 7,0),w)
it satisfies
2
|F (%t = m,0) | < 2t 0) 20 |x, (6= 7),w] w.p.1. (6.2)
i=1
and F(f,0,w)=0 w,p. 1, where xc M[R,,S(R,)]. Take
m=2 and
lx, !
V{t,x,w)=
12,1

In view of the assumptions on (6.1), we have
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D*V(z, $(0), ¢)

< flt, )V, $(0), w)+ Alt,w)V(E, d(=T),w). (6.3)
where AE, @) At w)
A, w)=
A, w)  Alt,w)

The auxiliary system is #'(t, w)=f{¢, wu(t, w)
+A(t,wh(t - 7,w). The trivial solution process u=0 is

(i) stable in probability, if
lim P{w: f 2x(s,w) exp[f f*(u w)du

tew
-fos,w)ds]=k}=0,

where k=k(t,)
fi= min{fl: f2}§

(ii) asymptotically stable in probability, if
lim Plw: [f: 2r(s,w) exp[f" Tf,"(u,u)du]
tee 0 8=

(6.4)

is some positive real number, and

- fils,w)ds]= 0}=0; (6.5)
(iii) stable with probability one, if

Plw: lim[f: @r(s,w) exp[fs S, w)du]
tew "tp Lt

~fels,w)ds]<k}=1,
where k=Fk(¢,)

(6.6)
is some positive real number;

(iv) asymptotically stable with probability one, if

t
Plw: }121 [ﬁ( to(ZA(s,w) exp[f;f*(u,w)du )
—f*(s,w)ds)]s —a}=1

where a is some positive real number, and f,
=min{f,, f};

Hence by Theorem 5.1, it follows that (6.4) implies
(SP,) of (6.1), (6.5) implies (SP,) of (6.1), (6.6)
implies (SS,) of (6.1), and (6, 7) implies (SS,) of (6.1).

(6.7

The following example illustrates the use of
Comparision Theorem 4.3,

Example 6.2: Consider the system random functional
differential equations

%'t w)=L{t,x,(w),w) (6.8)
where x< R", L& C[R,xC", S(R")] and L(¢, ¢,w) is
almost surely linear functional in ¢. By Riesz
Theorem, 2> we have

Kt w)= [Cdmlt,w,s)(t+s,w), (6.9)

-

where n{{,w,s) is an nX»n random matrix whose
elements n,, =7,, ({,w,s) are almost surely sample
continuous random functions in £ R, and are almost
surely sample functions of bounded variation on [- 7,0];
the integral is almost surely sample Stieltjes integral
on[-7,0]. For t>t,+ 7, (6.9) can be written as

)= [ d,n(t,9)E,0) - [ dnt,s)
[f:,s[fi dynue, 8){u + 0)]du]. (6.10)

Take V(t,x,w)zz:.':,lxil. From (6. 8), (6.9), and (6. 10),
for k>0 and = {,+¢, we have
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V@ +h, x+hL(t,x,,w),w)

_Z)|x,+h f At w,s)x(t+s)]

=g/:[[xi +hk§ o amn,t,w,9

Xy =23 S L ey, 0,00, + )] ]
g,?;[lxﬁhé fid,nikxk|+h!§[§§ffdsnik
XUJT LIS damggx, e+ ) du] 1|1, (6.11)

The first and second terms in the right-hand side of the
inequality (6.11) can be written as

n
[UrfSdmng) L]+l Cdmal 1] 6.12)
k#i
and
n n o o
hg[,zi Tf,, LA c-il:?q f_, | dgnes |)
x( sup |x,(t+s)]], (6.13)

~2r%S€0

respectively, From (11), (12), and (13), one obtains
D*V(t, $(0), 0, w)

< supla, (¢, 7, ) +Z"J:a,.k(t, 7, )V, 6(0), )
k i

Lid

+r§:@ at, T, @) sup V(t+s,ols),w) (6.14)

-27T<8 =0

(t T,w) are defined by
f s7;5 t w,s)

|f-1-dsnij(t5wys)li l'*j;

b,;(¢,7) is the entry in the ith row and jth column of the
nXn matrix T({t,w,s)) S(TM{ +u,w,s)), T, w,s))
=(T;,(t,w,s))) and S(TO{t +u,w,s)) = (SUP_ ey
T(n,,(t+u,w,s)), T, (t,w,s)) is the total variation

of the ith and jth entry 7, ,({,w) of the matrix n(¢,w) on
the interval [~ 7,0].

where a,(¢, T,w),

i:ja
a,t,T,0)=

We assume that

a,¢,7,0)<0 w.p.1, (6.15)

and
ag (¢, 7,0) |- Ea”(t T,w) — T[T Tb (£, T,w)]=k
i*’ (6.16)

for some j=1,2,...,n and some positive real number
k.

For any a €[0,«), then the function

(t T,w) +Z}a ST ,w)]+ Texp(2aT)

i*j

Fla)=a+ sup[

n n

[]EEb

(& (¢, 7,w)]

if

defined and continuous on {0,=). From (6, 15) and (6. 16),
and the definition of F, we have F(0)< 0, Moreover,
F(a) is increasing on [0, <), therefore we can find a
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positive number A such that

F(»)<0. (6.17)
We take 4(t,w)exp[rt], and define
Q,={¢e C":-—rS:.:EoA(t +s,0)V(t+s,o(s),w)
=A(t,w)V(o(0))}
From (6.14), (6.17), the definition of V, and
sup |¢,(s)|< sup llp(s)ll < 11p(0)ll exp(2ns),
21550 “2rs%0
we have
Alt,0)D'V(E, (0}, b, w) + A%, w)V{E, $(0), w)< 0
(6.18)

whenever ¢ Q,. The comparison equation (4.23)
reduces to u’(¢,w) = - ault,w). It is obvious that the
trivial solution of this is almost surely sample
asymptotically stable. Therefore, by the application of
Theorem 5.5, the trivial solution of (6.8) is almost
surely sample asymptotically stable,

To illustrate the usefulness of comparison theorems
relative to the system (2.1), one can construct examples
similar to Example 6.3 in Ref. 13. In addition, to show
an advantage of a vector Lyapunov function, an example
similar to Example 5.3 in Ref, 17 can be given,
analogously. To avoid repetition, we do not want to
present further details,
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The Feynman maps and the Wiener integral
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By introducing the family of Feynman maps J*, we show that our earlier definition of the Feynman path
integral 7 = 7' can be obtained as the analytic continuation of the Wiener integral E = 7~'. This leads to
some new results for the Wiener and Feynman integrals. We establish a translation and Cameron-Martin
formula for the Feynman maps 7, having applications to nonrelativistic quantum mechanics. We also
estalish a (weak) dominated convergence theorem for 7! = 3.

1. INTRODUCTION discuss their applications to nonrelativistic quantum
mechanics in a future paper. Paralleling the develop-
ment of the Wiener integral, we also establish a transla-
tion formula for the Feynman maps 7° in Theorem 5.
Because of the simplicity of our definitions, all these
results are fairly easy to establish. We feel that this

is one of the strong points in favor of our treatment.

In previous papers we have given a new definition of
the Feynman path integral 7 in non-relativistic quantum
mechanics. Unlike most existing definitions of the path
integral our formulation is based on the piecewise lin-
ear polygonal paths introduced to the subject by
Feynman. 1 Apart from its physical appeal, the simpli-

city of our definition makes it very easy in principle to In writing this paper we have been strongly influ-
evaluate Feynman integrals. In spite of the naivety of enced by the papers of Nelson! and Albeverio and

this definition it has some nontrival applications to Hpegh-Krohn.® It seems appropriate at this stage to
quantum theory.? list one or two other references. For early work on

the rigorous definition of the Feynman integral we re-
fer the reader to Cameron’s papers whose approach

is similar in spirit to ours, but whose results demand
analytic potentials.® The aforementioned paper of Nelson

We have seen for instance that the wavefunction solu-
tion of the Cauchy problem for the Schrédinger equa-
tion, for harmonic oscillator potentials V(x) =Ax® + Bx

+C, AZ_ 0, and continuous bgunded potentials V(x) gives a rigorous definition of a Feynman path integral
= [exp(iax) dii(a), where it is a measure of bounded with extensive applications to the Schridinger equation,

?.bsolute ';'ariation, can be fexpres'sed a§ a Feynman but it does not define the Feynman integral of general
integral.” For these potentials this validates the functionals on path space.

Feynman—Dirac conjecture expressing the quantum

mechanical amplitude as a “sum over paths y” of More recently 1t6 has defined a path integral as a
expliS[v]/#t, where S[y] is the classical action corre- limit of certain Gaussian measures on a Hilbert path
sponding to the path ¥ and # is Planck’s constant di- space.” Tarski has written on this formulation and
vided by 27, given a number of applications.® Although there are

close connections with our work, we feel that It6’s ap-
proach is less intuitive and more difficult to handle than
the one which we advocate.

We have also seen that, using the quasiclassical rep-
resentation which we introduced in an earlier publica-
tion, the Feynman path integral 7 gives a simple way

of obtaining classical mechanics as the limiting case The above work of Albeverio and Hpegh-Krohn de-
of quantum mechanics when 77~ 0.° Hence / tulfils one fines a very elegant path integral by means of infinite-
of the early hopes of Feynman and Dirac that the path dimensional oscillatory integrals.® This definition
integral approach to quantum mechanics should give the makes great use of the Fourier transform on path
classical mechanical limit in a straightforward way. space, the idea for which also appeared in the earlier

To extend the applicability of the Feynman path inte- distribution-theoretic work of DeWitt-Morette. '’ In
gral 7, it is necessary now to establish a body of theo- some ways our work can be regarded as a synthesis of
rems to simplify the evaluation of Feynman integrals, the ideas of Cameron and Albeverio and Hoegh-Krohn.
or to reduce their evaluation to more or less standard This synthesis is possible because of the simple con-

mathematical procedures. This task is undertaken in nection between the reproducing kernel of the under-
the present paper. lying Hilbert path space and the piecewise linear poly-

gonal paths. The reproducing kernel is an important

We define here a family of Feynman maps 7° and ingredient in simplifying most of our proofs. For a
show that the Feynman path integral 7 =7' can be ob- review of work on the Feynman path integral until 1974
tained as the analytic continuation of the Wiener inte- we cite Tarski and for an earlier review Gel'fand and
gral E=7"" This leads to new results for both the Yaglom. 11
Feynman and Wiener integrals, summarized in Theo-
rems 3 and 4. The main content of the present paper is Finally we add that, to make our exposition as sim-
the proof of a Cameron—Martin formula for the Feyn- ple as possible, we have restricted our attention to
man maps 7°and a {(weak) dominated convergence theo- one-dimensional path integrals. It is a simple matter
rem for 7. These are given in Theorems 6 and 7. Both to generalize our results to n~dimensional flat-space
these results extend the applicability of 7. We shall path integrals. 12 74 make the paper as self-contained
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as possible, we have included one or two of our earlier
results—most notably Theorems 1 and 2.

2. THE FEYNMAN MAPS

In this section we establish what we feel is an im-
portant connection between the polygonal path formula-
tion of Feynman integrals® and the more recent path-
space Fourier transform approach to the subject. 5,10

This connection is crucial for our subsequent results.

The Hilbert space of paths H will be fundamental in
all that follows. H is the space of continuous functions
v: (0, {) = IR with weak derivative dy/d7 € L*(0, t), norm-
alized so that y(f) =0, endowed with inner product

(,)

ﬂdld (1)

r
(v, ¥ = o ar

We recapitulate the main properties of H in Theorem 1.

Theovem 1: H is a real separable Hilbert space in
inner product norm topologgl ye H iff 3 constants
0 @, B, € R with 31 (a? +8,) <= such that
Y(T) = {7 = 1) +7\ g"is

<2ﬂnT
Lo S\

= Bt 2TnT
+:—=’1217n [l—cos< 7 >] , 7e(0,2), (2)
and
=
Iy 112 = (v, y)zta%+§Z}(ai+Bﬁ) <o, (3
n=1

H has a reproducing kernel G(o, T)=f = 0™, where o7
= sup{o, 7}, the reproducing property being, ¥ v ¢ H,
Vv oe(0,1],
(G(a, ), v(+) =¥(0). Y
Proof: See Theorem 1 of Ref. 2(b).
The paths ¥ € H can be thought of as the paths which
a quantum mechanical particle, in one space dimen-

sion, might actually describe in an experiment, but
this point of view is far from mandatory.

We also require the linear maps P,: H~H, defined
for n=1,2,-°- by

PN = z 0 [G(];r 1 ‘r) - G({i—t, T)]

n
x['yjﬂ = 'Vj]t_r (5)
where y; =y{jt/n), j=0,1,...,n. Evidently we have

n=1

('}”, Pn'}/) :E (7]{41 - ’y;)(yj-tl - .yj) t = (Pny,) 'V): (6)
3=0
where ¥ =v'(jt/n), j=0,1,...,n. Substitution of G(o, 7)

=t-0'T gives

it
@0 =y, + (7= 2) 0 =77,
ter G+ 0
n n
j=0,1,2,...,n~1. It follows that P2=P, and P*=P,.

Hence P,:H - H is a projection.
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The paths P,y are just the usual piecewise linear
polygonal paths. The next theorem shows how numerous
they are in H.

Theovem 2: P,: H is a projection, If /:H —~ H denotes
the identity, then P, tends to / in the strong operator
topology on / (H,H), P, %I,

Proof: We must show that if V={yecH| P,y -yI~0
as n—~=}, then V=H. We include here the proof which
we first gave in Ref. 2(a). First V is a closed subspace
of H. V is a subspace because P, is linear. Let {yplm
=1,2,+--}C V with lly,,— yII=0, as m—=, for some
vec H., We show that necessarily ¥ « V. QObserve that

1Py =I=IlP,y~
<Py =7 )+ 1y =7 ll + 1Py = vl

Y=PYmt¥m+Ppy¥m—=Vall

(8)

Hence,

1Py =yl <2lly = vull + 1P,y = vall. (9)

Given € >0, 3 N, such that il¥ = ¥, <€/4 when m =N,,
Also, 3 N(m, €) such that Py, — v, <€/2, n= N(m, €).
From the above inequality then, for n3> N{(N, €), WP,y
-yll<e, Thus, WP, y-vIl-0asn—-=, soVisa closed
subspace of H,

Now let Yy < H, Then 3 a,, o, 8, c R such that

Ild'y/dT-SNlle-—O, as N—, (10)
where
N
X 2anT T
SN(T):a0+Lancos< 7;" ) +7\B sm(m;n ) (11)
1
Hence, integrating the above Fourier series term by

term and defining Ty (7)== [/ Sy(7') d7’, we have

lly = Tyl =lldv/d7 = Syll;, ~ 0, as N—. (12)

It is not difficult to show that, for each N, Ty eV,
Thus, ye V.

We now introduce the complex Gaussian e,: H—~C
defined by

edv]=expl(i/2)7IIF],

seC,

with Ims €0, s#0. (13)

Let f: H—~C be a complex-valued functional. The Feyn~
man map 7° is defined below.

Definition: For n=1,2, - -

FilA=

-, we denote by 75

a1
b a(fes) <P @ [, (esoP)ay]™, (14)
where o denotes composition, @'y =dy,dyy -+ -dv,.,

each integration being from — < to +, and Ims < Q.
(The normalization is chosen so that, for the functional

1: J_lfz[l] =1. )
We define 75 f], when Ims <0, by

FLA=1m7 17,

n=o

s#0, (15)

whenever the limit exists. We say that fe 75(P H) iff
the above limit exists.
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When s =1, the above definition reduces to that for
7 given in Ref. 2(b), where its physical content can be
elucidated. Naturally it is important to ascertain for
just how wide a class of functionals the above limit
exists.

The first result in this direction is given in Theorem
3. First we require another definition. **

Definition: # (H) is the space of functionals f:H—~C
with flv] = [y expli(¥’, ) ]1di,(y’), where u;ec M(H), the
space of complex-valued measures of bounded absolute
variation on (H,,), B, being the Borel o-field on H gen-
erated by open subsets of H.

Theovem 3: When Ims <0, 7(H)C 7*(P.H) and if fe 7 (H)
is given by

= [ expli(v', Vldu,(v"), 1ye MH),

F A= [ expl- (is/2)vIP]dudy). (16)
Hence, for Ims <0, we have
< [, dlug| 2, (17

Il Ily is a norm on the Banach function algebra 7 (H) with
identity 1. 7°: 7(H)~(C is a continuous linear map,
Ims <0, normalized so that 71]=1.

Pyoof: When Ims < 0, the proof of the first part of
the theorem is straightforward. Expressing P, in terms
of the reproducing kernel gives

[feP,llvl= [ exp (zb Ay} Ay, At") du ), (18)

where AYj:(7j+1_ :('qu—'yj); j:O, 1,2, aroy

n—-1and At=¢/n.

¥i)y AY;

Therefore, we obtain, for Ims <0, s20,
; n=l

F A= @uisat)™? [ dy exp (22—3 27 AYY At")
=0

n-1
x/exp (iE A'y]’-Ay,At'1> dugy"). (19)
J=0

Interchanging orders of integration by Fubini’s theorem,
for Ims <0,

Filrl =/duf(7’)(2ﬂisAt)'"”/d"v
;  n-l
X exp (2 lAtJLO (A%2 +2s4y] Ay,)) (20)

Completing the square in the exponential and evaluating
the integral by contour integration, we obtain

71 /d”f(y exp(w ,L’o e )
:/duf(v') exp (—_2—18— (7',P,,Y')> )

The result now follows from the last theorem and the
dominated convergence theorem for ;.

(21)

Ims < 0.

When Ims =0, s#0, changing the orders of integra-
tion is slightly more delicate.
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The argument which enables the orders of integration
to be reversed was first given in Ref. 2(b). There,
however, we did not give all the details of the proof
that

fRIY'1=N, exp(2 Z) Ay} At")
F=0

R R.:r' 1 f ” .
X exp 2? 24 Ay] At')d"'y
-Rert) “(Rerhel)

satisfies |fz[vy']l <M, independent of R and y’, the
reason being that the details are somewhat tedious,
depending upon repeatedly rotating and reflecting the
region of integration. Here we avoid this technical de-
tail altogether by a more careful definition of [ 7, -+
[ody. Wetake [ 5.« [dy=limg .. [%--  [Bd ay,
where the limits of integration — R and + R now refer
to the integration variables Ay, Ayy, ..., Ay, not

Y0s Y1y « » 5 ¥no1, S previously. These are the natural
integration variables in our later results too.

Fubini’s theorem implies that, for real s, s#0,

R R i n-=1
(2mis Ap)=/2 f e f exp - Aﬁ At'l)
-R -R 28 120

X[ 2P, |yl ay = [ dis ") faly ), (19"
where fz(v’] is now given by
faly’]1=(2mis a1)™/* exp (————2 2 avf At'l)
R+sA70 Resarn-1
L
R+sarf) .R+sAY:1_1
X exp( ZJ ay)? At'l) dray”, (20"
y] being defined by v/ =v, +svj, 1=0,1,2,...,72-1and

d*Ay” =dayg - - -dAy,) .

However, in Lemma 1 of Ref. 2(b), we establish that,
for b>0, |[¢ exp(ibt?)dt| < C(b), uniformly ac (0, ).
Hence, expressing the integral as a product, it follows
that |fz[y’]! < M, where M is independent of R and v’'.
What is more, we easily see that fz[v’]—= exp[- (is/2)
x(y',P,y')] as R—=. Applying the dominated conver-
gence theorem for the measure y;c M(H) in Eq. (19")
then yields, for reals, s#0

R
Ff]1=1im (2risat)/? fRf
R+w R R

¢ n-1
<exp (s 25 vt art)lr- iy oy

fexp( 5 (v, Py )) dugly’),

as required to change the orders of integration, The
result follows letting n— = as above.

21"

We now observe that M(H) is a commutative Banach
algebra in absolute variation !l I, under the convolution
of measures «. For by Fubini’s theorem, for any bound-
ed continuous functional f,

(22)

[AYYAG <)) = [Fly +7"du) dv(y?).
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Hence we obtain
[l * vl < Hullflvi. (23)

The associativity of x follows from Fubini’s theorem.
Completeness follows by standard arguments.

BV =VxH,

We must now show that 7 (H) is the isometric isomor-
phic image of M(H). The only difficult part of this re-
sult follows by putting f[¥]=exp[i(y, 6)] in above to
obtain

J expli(y, 8)]d(u*v)(y)
= [ expli(y, 0)]du(y) [ expli(y’, 8)]dv(y’). (24)

If the entire function E(2) =3 7, a,2", then E(f) =} a,f"
is the Fourier transform of g @, (s * Lg* =« * fif)

€ M(H), as can be seen by repeated application of Egs.
(23) and (24). The separability of H implies that

€ M(H) (if it exists) is uniquely determined by f and by
definition Ifllyj=llu . Thus, under multiplication and
addition 7 (H) equipped with Il Il; is the isometric iso-
morphic image of the Banach algebra M(H) and 7 (H) is
a Banach algebra.

The continuity of 7° follows trivially from above.
Finally 1< 7(H) is the Fourier transform of 6,c M{(H),
where for Borel ACH,

8,(4)=1, if0ecA, (25)
=0, otherwise.

Needless to say, the first term of ¥ oo a,(fp* pyx -+
* ly) is understood to be (@;6). 8, is just the identity
in the Banach algebra M(H) and 1 is the corresponding
identity in the Banach algebra 7 (H). This completes the
proof.

Covollary 1:¥ fec F(H), lim,., 71 f]=/0], where s—0
in the region Ims < 0.

Proof: Apply the dominated convergence theorem in
Eq. (16). Henceforth, for any functional f: H—~C we
define 7 f1=A0]. "

The relationship in Theorem 3 is the promised con-
nection between the “sum over polygonal paths” defini-
tion of the Feynman integral and the definition via
“Fourier transform on path space” (see Ref. 2(b)].

3. THE WIENER INTEGRAL

In this section we explain the connection between the
Feynman maps and the Wiener integral. We prove, in
fact, that the Feynman path integral 7 =7 can be
realized as an analytic continuation of the Wiener inte-
gral. This leads to new results for Wiener integrals as
well as for Feynman path integrals.

First there is no a prio7i reason to restrict the path
space to be H. Indeed since any y € H is necessarily
the integral of dy/d7 € L%(0, #) and hence is absolutely
continuous with a. e. derivative dy/d7, the paths ye H
may well be too smooth to be consistent with Heisen-
berg’s uncertainty prineiple. In the foregoing definition
of the Feynman maps 7° we merely require that ', the
path space, be such that it contains the polygonal paths,
so that P HCT, forn=1,2, . The space H is not
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compact and so there is no Riesz-Markov theorem
giving a 1—1 correspondence between regular Borel
measures on H and positive functionals on the putative
commutative Banach algebra of continuous functions

on H.'® The following way of obtaining a compact model
for the path space I is due to Nelson.* A priori, it
makes minimum smoothness assumptions on the paths.
It leads to our construction of Wiener measure, which
in part copies Nelson.

LetR be the 1 point compactification of R; then we
put T =Xy R, with the (weak) product topology.
Tychonoff’s theorem asserts that I is a compact
Hausdorff space. The elements ¥y € I' can be thought of
as arbitrary functions v :[0, ) = RuU{x}. C(I") denotes
the Banach algebra of continuous functions defined on
T'. The Riesz—Markov theorem asserts that there is
a 1—1 correspondence between positive functionals on
Cg(T), the real-valued continuous functions defined on
I', and regular Borel measures on I'. This is basic in
what follows.

We denote the space of functionals 7(H)n C(T') by #,.
Then we have the following lemma.

Lemma 1: 7 is dense in C(I").

Proof: The proof is an easy application of the Stone—
Weierstrass theorem., !* Firstly 7, is closed under mul-
tiplication, because M(H) is closed under convolution.
Secondly fe 7,=>f¢c},, the overbar being complex con-
jugate. Thirdly, if y#v’, v,7' €', 3 0c[0,t) such that
(o) #¥'(0). Hence, 3 e c R with ofy(¢) - »'(¢)] #0 (mod
27) = expliay(o)]# expliay’(0)]. But fly]=expliay(o)]
€ #¢ and so #, separates points of I'. Finally we have
already seen that 1< 7,.

Denote by 7¢¢, 75'=7"*|7,. Then we also have Lem-
ma 2.

Lemma 2: 7;* has a continuous extension E to C(T")
such that, v fc C(T),
|ELA}] < 1Al c=sup | A¥]]. (26)
yer

E is positive and so there is a unique regular Borel
measure U, such that, ¥ fe C(I),

E[fl= [Ar]du, (). @7

U, is just the Wiener measure with suppu,, < C0, #),
the space of continuous functions v : (0, £) = IR with »{(¢)
=0. A posteviori, E=7 and

|70l < sup AV, (28)

YeCy(0,t)
V continuous functionals f: C(0,¢)~C.

Proof: By definition 7;i is positive in the sense that
feF, with

fArlz0, v ver, = 7i(fl= 0.
Since 7¢'[1]=1, it follows that, V real-valued fe 7,,

Fill <sup |Ar]}. (29)
Yel'

Since Re7 /[ f1=7;[Ref]l, we obtain for any fe 7, (pos-
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sibly complex-valued) with 7[f] =
¥ real and positive,

exp(i®)r, ¢ real and

| 75! ]| =ReF;'[exp(= i¢)f] =7 ;' [Relexp(~i¢)f]]
<sulee[eXP(—z¢>)f[V 1< sup A, (30

Hence }5' has a unique positive extension E to the whole
of C(I'). AsT is compact, the Riesz—Markov theorem
asserts that corresponding to E there is a unique re-
gular Borel measure g on I' such that

E[f)= [ Avldut). (31)

This proves the existence of the path-space measure

4 in the case corresponding to s=-i. Of course, the
same argument works for any negative imaginary value
of s. As we shall see there is no path-space measure
for other values of s.

One can now show in a number of different ways that
supph C Cy(0, £). '® The fact that 4 =i, the usual Wiener
measure with suppi,, € C,(0, #), and that E=7"* follows
from the observation

FilAl= [P llyldis, (r) (32)

and fe C(T) = (f°P,) —~f, a.e. w.r.t. Wiener measure
W, as n— =, Letting n—- = and using the dominated con-
vergence theorem proves the result.

We have gone out of our way to show that E=7"% is
determined by its values on the apparently small space
of functionals 7. Since it turns out that g, is supported
by Cy(0, t), the functionals in 7, need only be continuous
on C(0,t). We observe that if f< 7(H) is a continous
functional f: Cy(0, t) ~ €, we have the Parseval identity

AR duy ().
(33)

E[fl= [o,0.6/r)dm, () = [, exp(-

This seems to be a new result for Wiener integrals.
It is basic to Theorem 4.

Theovem 4: Let fc 7(H); then 7°[ f] is a regular an-
alytic function of s in Ims <0, continuous in Ims < 0.
If fe 7(H) is a continuous functional f: Cy(0, #) -~ C, then

FlA=1m7*[f], E[(fl=timF "[f]. (34)

€0+ 6-~0

Interpolation gives
|75 LA < AR A
O<sas<m/2, s>0, (35)

where Ifll o=8UPyec @, A1l

Proof: First, V¥ yc H, exp[- (is/2)llylI?]~ exp[- (is’/
2)iyit] as s—s’ € and lexp[- (is/2)y1?]l <1, ¥ yeH,
Ims < 0. Thus, the dominated convergence theorem for

the measure {; in Theorem 3 gives the continuity result.

Let C be any simple closed contour in Ims <0. Then,
interchanging orders of integration by Fubini’s theorem,

$.Fdrlds=§_ds [, expl- is/Dly*}dus)
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= [, dus) §_ expl- (is/DlxI*]ds =o0.
(36)

Hence, for f< 7(H), Morera’s theorem implies that
7] is regular in Ims < 0.

Since |7 f]l< Iifil,, when s is real, and |7 f]!
< lifll,, when s is negative pure imaginary, the last
part of the theorem follows by interpolation.

We showed in Lemma 2 that there was a path-space
measure [, corresponding to 7, when s is a negative
pure imaginary. The next lemma shows that this does
not occur for any other value of s. The idea of the proof
is, in essence, due to Cameron. 17

Lemma 3. There is no path-space measure (of finite
absolute variation) corresponding to 7, unless s is nega-~
tive pure imaginary.

Proof: Let s =s,-1s,, S5 >0, s; real. Assume that
corresponding to 7° there is a path-space measure [
defined on I'. For fixed » and Ima <0, consider the
functional £, : T - C

¢ n=1
fulv]=exp (—5}32 AY?)

n=1

= (2miaaf)™/? f dy’ exp (zZ} Ay] Ay, Al
=0

= zj P2 At-l), (37
2 i=

where Ay; =y, -v; and v; =y(jt/n), j=0,1,2,...,n.
We assert that, for Ima<0, f,< J(H). To see this, let

7, : IR"~ H be defined by
+ 14 it
i Vn-l) _Z—j [(;(] ) - G (J_, > ] ijAt-l'
n n
(38)

77,,('}/0, . %
i=

Define the measure ¥ on R" by
. n‘_\l
v(B) = (2miaal)™"/? / d™y’ exp (iz_, ij’z At’l) , (39)
B i=0

for any Borel set BC R". Then, for Ima<0, W, cM(H)
is given by

Len(A) = v(ntA), (40)
for any Borel set AC H, and

vl= [ explity’, M]dp, (). (41)

Then, from Theorem 3 and the hypothesis we obtain

ffn{y]dp‘s('}/) :}s[fn]
= [fexn (52 101 iy )
= (2miaal) "/ /exp (CTISZAﬁ al-t
+om DAY Az-1> dy. (42)
2a
Explicitly calculating the integral gives

[fly)duy) =1 =as)™2, (43)

We now put a = (s; - i€)/1s1%, soIma~ 0 when € > 0.
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Then |(1-as)?| =1|s|/(s,+¢€). When s;#0, we can
choose € > 0 sufficiently small so that p={(1-as)| >1.
Since sup, cr If,[v]! < 1, we arrive at

[rdlusl= | [ flyldus) | =08, withp>1,  (44)

and »# can be made arbitrarily large. Thus, when s;
#0, Mg must have infinile absolute variation, proving
the result.

We reiterate here that there is no need to assume
that the path space I is the Hilbert space H, All
that is required by our definition is that the path
space ’'> P H, n=1,2,---. We remark here that for
the Wiener integral, when I' = C(0, /), the Hilbert
space H has measure zero. This partly overcomes our
earlier objections to the paths in H being too smooth.
It is a general feature of abstract Wiener spa.ces18 that
the analog of H has canonical Gaussian measure zero.
In the future to simplify domain considerations we shall
assume I' =Cy(0, ) or ' =H, it being clear from the
context what the appropriate path space should be.

4, TRANSLATION AND CAMERON-MARTIN
FORMULAS FOR FEYNMAN MAPS

The translation formula giving the transformation
law for Wiener integrals under the change of integra-
tion variables y~v +a, fixed a< H, and the correspond-
ing Cameron—Martin formula giving the transforma-
tion law for Wiener integrals under the linear change
of variables y— (1 +K)y, with KCy(0,)CH, (1+K) |,
being a linear injection and K trace class, are well
known. !® In this section we establish the corresponding
results for the Feynman maps. This, incidentally, en-
ables us to prove in Corollary 3 that the class of inte-
grable functionals 7°(P .H) includes a much wider class
of functionals than 7(H). We shall show in a future pa-
per that the new integrable functionals have important
applications to nonrelativistic quantum mechanics. Our
results include as a special case the Cameron—Martin
and translation formulas for Wiener integrals.

The translation formula is the content of Theorem 5.
Theorem 5: Let ac H and denote by g, : H-C, g[7]
=glv +a], where g - 1c 7(H). Then, if Ims <0,

Fdexpl(i/s)(a, )]g,[ - 1]=expl- @/29)llall*] 7 lg].

(45)
Proof: By definition we have
Fdexpli/s)a, )lg,[ 1]
=1im F[expl(/s)(a, -)]g,[-1]
=1imN, [ expl(i/2s)(y, P,) +(i/s)(a, P,¥))g.[P,¥]d",
(46)

where N, =(2misAt)™/2 dy =dy,* - dv,_, and each inte-
gration is from — = to +%, Observing that ¥, =~ Z,’f;}
X 4Y,, we change integration variables to AY; =V, = ¥,,
j=0,1,2,...,n~1. We now simply complete the square
in t[he]exponential to give, with f{ - |=exp[(i/s)(a, -)]

Xga b

FdA=1mN, [ expl(i/29) 1P, (v + a)I*] g [P,¥]

n- o
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X d(P,y) exp|— (i/2s)IP all®], (47)

where d(P,y) =dAy,dAy, - - - dAy, ;. Changing integration
variables now from d(P,y) to d(P,y + a), in an obvious
notation with ¥’ =v +a,

Flfl=1imN, [ expl(i/2s)(v’, P,y ) g[P,y' - P,a]

neo

xd(P,y") exp|- (i/2s)(a, P,a)). (48)

Writing h,[y]=g,[7 - P,al=gly + (1-P,)al, we see that
hal*le 7(H) and

hv]= [ expli(', v)]expli(y’, 1-P,a)]di(y).  (49)
Hence, from the first part of Theorem 3 we obtain

Fdf1=limexp{- (i/2s)(a, P,a)| 7 ]

n-w

=limexp[~ (i/2s)(a, P,a)] [ exp[- (is/2)(y, P,¥)]

new®

x expli(y, 1-P,a)ldu,(v). (50)

The result follows from Theorem 2 and the dominated
convergence theorem for i,.

Theorem 5 has a corollary:

Corollavy 2: Let E denote expectation w.r.t. the
Wiener measure H,. Then, for fixed ac H, with & of
bounded absolute variation,

E[exp[- (a, +)1g,[ - 1=exp(llall*/2)E(g], (51)

when g: Cy(0,¢) ~ € is a continuous bounded functional,

Proof: Firstly when a is of bounded absolute variation
(a, +) is defined a.e. w.r.t. Wiener measure i, as a
Stieltjes integral. If ac H is such that a is of bounded
absolute variation and g is a continuous bounded func-
tional integrand on the lhs is a continuous bounded
functional mapping C(0, #) = €. Putting s =—¢ in Theo-
rem 5, with @ of bounded absolute variation, the above
result is true for ge 7,. As 7, is dense in C(I'), the
result follows.

The Cameron—Martin formula is the content of the
next theorem.

Theovem 6: Let (1+K):H—~H be a linear injection
with K trace class and det(1+K)#0. Let g: H~@ and
define gy,x : H— @ by grxlv]=2(1 + K)y]. 1t is conve-

nient to denote by € gy«
(€8 gyx lv] = expl (/) (K, v) + (/25) (Ky, K¥) g1k [7],
(52)

so that (¢ gy.x) : H~@. Then, if g 75(PH), (fg1.x)
€ F%(P.H), and

F e grr]=det(1 + B 7 [g]. (53)

Pyoof: By definition we have

}s[e,s(ghK]: lim }:[e§g1+x]

new

=limN, f exp(i/28)I(1 + K)P,yII?]

1o

X g1 [P,y1d(P,Y). (54)
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In this integral the variables of integration d(P,y)
denote

aay, =dlyG+1i/n) ~vGt/n)], 7=0,1,2,...,n-1.
We shall change integration variables to &y =[y'(j + 1{/
ny=y'Gt/n)), 7=0,1,2,...,7n-1, where

Y =(1+K)P,y. (55)

To carry out this change of integration variables, we
must calculate the Jacobian determinant by using the
reproducing kernel.

We denote by e7(+) =[GG + 1t/n, -) = G(t/n, -)n/D?,
7=0,1,2,...,n-1, It is simple to check from the re-

producing property that e}, e, ..., €;_, is an orthonormal
system of vectors in H. (We return to this point later.)

We have

n__\-l n 1/2
Py=2,(Ay,) (—) e} (56)
20 t
and from reproducing property, for 2=0,1,2,...,n-1,
a\ 172 n=1 A\ 172
A%, (,—) =(ep, v = (ez, 25 (1+K)Ay; (;) e?)
i=0
n-1 ” 1/2
=2, Ay, <7> ez, (1 +K)e)). {(57)
=0

If we denote the (#Xn) identity by 7,, the Jacobian de-
terminant for the change of integration variables is
just

dPy) _ -1 1

aEy =detls, + P.KP, ] = |J"| 2, (58)

But P, 57 and so |J"| -det(1+K)#0, as n—~, Thus,
for sufficiently large »n, {J"|#0, and we can change the
variables of integration to d(P,»").

The circumstance [J"] #0 is also just the condition
for (1-P,)KP,=0. To see this, we write (1+K)P H
as an orthogonal sum

(1+K)P,H=P,(1+K)P,H®(1-P,)(1+K)PH. (59)

Evidently dim{(1 + K)P H} < dim(P H) =n. We now show
that, if J,#0, dim{P,(1+K)P H} =n. This is a simple
consequence of Eq. (57).
Let P,y’'c P,(1+K)P,H, where v'=(1+K)P,y, veH.
Then we can write
n-1 n-l

Pny’:.z\/o (e?yPnV’)Q?ZEO (6";, ') e;'l
i= i=

nel 172
ZE ij 7 e;‘lv (60)
720 t
where we are using (e}, ef) =8, 7, 2=0,1,2,...,n-1,
P¥=P,  and Pe;=¢; j=0,1,2,...,n-1.
However, we have already seen that
n-1
A')/;:P)J;';A')’;, ]:0, 1,...,1’1—1, (61)

where P,y =372t 8%, (/) %e,.

We now fix m and choose P,¥ so that Ay, = (J");},

1=0,1,...,n~-1. Then we obtain from above &Y= 0,,,
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j=0,1,2,...,n=1, or Py’ =(n/t)!'*¢,,. Letting m
=0,1,...,7=1, in turn, proves that if |J"| #0,
dim[P,(1+K)P,]=n and (1~ P,)KP,=0.

Thus far we have seen that det(1+K)# 0= 1J"| #0,
for sufficiently large n, = (1-P,)KP,=0. Choosing
n sufficiently large so that |J"| #0 and changing inte-
gration variables to d(P,y’), we obtain

Filelgixl=|J|N, [ exp{i/29)IP,¥'II%
xglPy'1d(P,y"). (62)
Letting n—=, the result follows.

If we accept one or two probabilistic technicalities,
we can prove the Cameron—Martin formula for Wiener
integrals.

Covollary 3: Let {1 +K) : C((0, 1) ~ C(0, #) with
K[C,(0,)]C H. Let (1+K) |y :H—~H be a linear injection
with K |, trace class and det(1+K) #0. Let g: Cy(0, 1)

— @ be a bounded continuous functional and denote by E
the expectation w.r.t. Wiener measure i,. Then

E[exp[- (K': ')_%(K',K')]gl#{[ ']]
=[det(1 +K) " E[g]. (63)

Pvoof: Here (K-, °) is defined as a random variable
according to Kuo and (KP,-,P,-)—- (K-, -) in proba-
bility as P,=<1, because P,HC C¥(0,1), n=1,2,- -

(see Ref. 18, p. 142). The proof follows as in Corollary
2.

The next corollary has important applications to
gquantum mechanics.

Covollary 4:
FPHDOUL[FHE g (Ims <0, s#0), (64)
K

where the union is over all trace class K with (1+K):
H~H an injection, det(l +K)+0.

Pyoof: The result follows from the last theorem and
the fact that 7(H) C 7°(P H), when Ims < 0,

To see the power of the last corollary, we observe
that 1< 7(H). This enables us to integrate an enormous
number of quadratic exponentials occurring in non-
relativistic quantum mechanics. We shall discuss some
applications of these results in a future publication.

5. CONCLUSION

In this paper we have shown that the Feynman path
integral]1 can be obtained as the analytic continuation
of the Wiener integral 7~ by introducing the Feynman
maps 7°. We have seen that a number of basic prop-
erties of the Wiener integral generalise for the Feynman
maps 7°. In particular we have seen that the Feynman
maps 7° have analogs of the translation and Cameron—
Martin formulas. On the negative side we have shown
that there is no path-space measure corresponding to
the Feynman maps 7°, when Res #0. This makes it
rather difficult to prove any sort of dominated conver-
gence theorem for the Feynman path integral ]1. There
is, however, a rather weak dominated convergence the-
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orem for 7!, which we include here for the sake of com-
pleteness, In some ways this theorem is an extension
of Theorem 4,

Theovem T: Let {f,,} be a sequence of continuous func-
tionals, f,c 7(H), f,:Cy(0, )~ C, uniformly bounded in
Il #y. Let f be a continuous functional such that g(~is)
=7 .lf]l, s>0, is the restriction to the negative imagi-
nary axis of the function g(s), which is regular analy-
tic?? in Ims <0, with If,— fl ,~0 as n—~«. Then, if f is
such that (f - P,) € 7(H) and { fo P,} is uniformly bounded
in II iy, for a.e. real s, fe 7°(P.H) and

}s[f]:lim}s[fn]:g(s), (65)

nee
i.e., with probability one the Feynman integral of f is
equal to the analytic continuation of the Wiener integral
of f and the Feynman integral of the limit of a sequence
of functions uniformly bounded in | Iij is equal to the
limit of the corresponding sequence of Feynman
integrals.

The proof depends upon two elementary lemmas.

Lemma 4: Let{ f. be a sequence of continuous func-
tionals f, € 7 (H) uniformly bounded in Il Il,. Let Iif, = fll
-0, as n—~=, where f is a continuous functional with
the property that g(-is) =7 [f], s >0, is the restric-
tion to the negative imaginary axis of the function g(s),

~which is regular analytic in Ims <0, Then, if the limit
exists, for a.e. s>0,

lim 7 7,]=2g(s). (66)

e
Proof: {h,|h,(s) =771 is a uniformly bounded se-
quence of regular analytic functions in the domain Ims
<0. Hence, {h,} is a normal family of regular analytic
functions. ?® Thus, as{sls=~14s’, s’>0} is a determin-
ing set in Ims < 0, h.(s)=lim,..7Jf,] exists ¥ Iras <0
and is a bounded regular function of s in this region.
However, h.(s)=g(s), s=-is’, s'>0=h.(s) =g(s),
V Ims < 0. The Fatou—Privaloff theorem?! for h.(s)=> if
the limit exists, for a.e. s >0, lim,..74%,]=g(s).

Lemma 5: Let f be a continuous functional f: Cy(0, ¢)
—C such that g(-is)=7F_;[f]l, s>0, is the restriction
to the negative imaginary axis of the function g(s), which
is regular analytic in Ims < 0, Then, if (foP,) e 7(H),
for each n, and {foP,} is uniformly bounded in Il liy,
for a.e. s>0, fc 75(PH) and

}s[f]:hm}s[fOPn]:g(s)u

=0

(67)

Proof: First (foP,) c F(H) =7 fl=F[foP,]. To
see this, we let U;p_ = 1, c M(H). Then [foP,][v]
= [expli(y’, 'y)]du,,()/’s. Since P2=P,, we obtain [foP,]
x[v]= fexpli(v’, P,¥)]du,(»'). Hence, [foP,][¥]
= [expli(y”, v)]du,(P;y") = F [foP,]= | exp|- (is/2)
Xy 2] d, (Ply).

From the first part of Theorem 3 we obtain?®
FslfeP,l= [ expl- (is/2)(v', P,y")}di,(»")

=73A. (68)
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Thus, {f,} ={f-P,} satisfies the conditions of the last
lemma and so, for a.e. s>0,

g(s):lim}s[fc’Pn]:lim}i[f] :]s[f]; (69)

n-o ne

proving the result.
To prove Theorem 7, we now simply combine Lem-
mas 5 and 6 to give, for a.e. s>0,

hm} s[fn]:g(s) :}s[f]’ (70)

so, with probability one, the Feynman integral is the
analytic continuation of the Wiener integral, even when
Ff&F(H). Theorem 7 partly explains the many tantaliz-
ing identities between the Feynman and Wiener inte-
grals. When fe 7(H), it can be considered as a special
case of Theorem 4.

The above work and the results of previous papers
suggest that 7 =_#! is a good candidate for a workable
definition of the Feynman path integral in nonrelativistic
quantum mechanics. Certainly it is easier to work with
7 than with most previous definitions and, as we have
seen, it enables us to integrate a fairly wide class of
functionals. Associated with 7 there is a sufficiently
substantial body of theorems to make it a reliable and
efficient calculational tool. We shall discuss some
applications of the above results in a future paper. Be-
fore concluding this section, however, we wish to indi-
cate a connection between some of our ideas and some
elementary probabilistic notions.

It is clear that in the above we have made repeated
use of the fact that P,:H—H is a projection. This fact
is due to the property that{el, e}, ..., e"_;} is an ortho-
normal system in H. There is an a priori probabilistic
reason for this to be so—namely that the Wiener pro-
cess had independent normally distributed random in-
crements Ay; with variance Af.

It is a simple matter to deduce this orthonormality
of {e}, e}, ...,e" } from the well-known property of
Wiener measure that Y a,bc H,

E[(a, 7)(b; 7)]:(ar b)v (71)

by putting a =e}, b=e}, using the reproducing kernel
property and the independence of the normally distribut-
ed Ay;. It is interesting to note that, when we put a(-)
=G(o, +), b(-)=G(7, +), we arrive at the intriguing
identity for the reproducing kernel

E[y(a)¥(T)]=G(o, T),
o, 7e|0,t].

(72)

Thus, there are a priori probabilistic reasons why
Feynman’s polygonal paths are so well-suited for de-
fining a path integral. We feel that, bearing in mind
Feynman’s original ideas on the path integral, our de-
finition of the path integral is the most natural to make.
It is reassuring that, with this definition, despite the
absence of a path-space measure most results of the
Wiener integral generalize quite easily by using the
reproducing kernel,
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We begin here the rigorous construction of new superselection sectors for the free quantum
electromagnetic field by exhibiting a wide class of inequivalent irreducible *-representations of the
canonical commutation relations of the electromagnetic field. The *-representations constructed here
satisfy all the axioms of Haag and Kastler, except possibly Poincaré covariance. In a forthcoming paper,
the construction of the new superselection sectors is completed with the study of the spectrum condition

for the *-representations.

1. INTRODUCTION

This paper is the first part of a two part compre-
hensive study of the theory of superselection rules for
the free quantum electromagnetic field,! along the
C*-algebraic lines of Haag and Kastler® and of
Doplicher, Haag, and Roberts.3~® In this first part,
we construct a wide class of inequivalent, irreducible
x-representations of the canonical commutation
relations of the free quantum electromagnetic field.
The *-representations satisfy all the axioms of Ref. 2,
except possibly Poincare covariance. It is well known®
that for the free quantum electromagnetic field, be-
cause of infrared problems, Poincare covariant
*-representations are hard to come by. But it is, of
course, desirable to know under what conditions each
of the *-representations satisfies the spectrum condi-
tion. In Ref. 7, we study the conditions under which
space—time automorphisms of the C*-algebra of quasi-
local observables for each of the x-representations
are implemented by a strongly continuous unitary
representation of Minkowski space, an additive group,
such that the infinitesimal generator, the energy—
momentum operator, of the unitary representation
has spectrum in the closed forward light cone. Such
a x-representation, in the terminology of Borchers,?
is called positive. A superselection sector is an equiva-
lence class of positive x-representations, and each
sector carries labels called superselection quantum
numbers. The exercise is to provide a construction
which predicts all the superselection quantum numbers.
The sectors whose construction we begin here and
complete in Ref. 7 are labeled by continuous real
numbers, In the two-dimensional (space—time) models
of Streater and Wilde® and of Bonnard and Streater, !°
the superselection sectors have also been found to be
labeled by continuous real numbers, This explains why
the recent work of Frohlich!! which gives models of
interacting fields, also in two dimensions, whose
superselection sectors are labeled by nonnegative
integers, is of much interest, However, it has also
been pointed out in Ref. 11 that the construction under-
taken in Ref. 11 would fail in four-dimensional
Minkowski space, where we carry out our own analysis,
except possibly for non-Abelian Yang—Mills theories,
Our construction leans heavily on the theory of simplec-
tic transformations due to Segal, %13
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2. FOCK SPACE AND THE FREE QUANTUM
ELECTROMAGNETIC FIELD

Let R* be the 4~fold Cartesian product of R, the
real line, with itself, If convenient, we sometimes
consider R¢ as represented in the form R*=R X3,
Then, each xc R* is of the form x = (x,, X) with x,eR
and xc R 3.

Let M* denote Minkowski space. Then M* is the
couple (R4, [+, ]) where [, ] is the bilinear mapping:

[ TR*XR* =~ R
3
(x, y) e, y]=xowo - 2963
The bilinear pairing [-, - ] is an indefinite inner product

on M*, Let (M*)* denote the topological dual of M* and
let V < (M*)* be the cone

V= {p=(po, p) € (M*: [p, p]=0 with p,> 0},

It is well known that the Lorentz-invariant measure
on Vis

1 1
m(dP)—E;dP—mdpu

In the displayed expression for m(dp), we have implicitly
chosen p=(p,, p,, p,) as a global coordinate system
for V.

Let L°(V) be the equivalence class of all Lebesgue
measurable complex-valued four-component vector
functions f = (f,, f, fa» f5) On V which satisfy the
following four conditions:

(1) f(- p)= 7 (p) (reality condition),

() [p, £ )] =of®) = 230,70 =0,
(Lorentz gauge condition)

i) 17 1F = [,m@plsp), 7)<,

() [, L] 7,)|? <

In view of (iv), for fe L°(V)

h(x):fv midp) f(p) e i'e*l xc R9,

exists as a four-component vector tempered distribu-
tion on R4,

The quotient space L°(V)/(Kernel ||-||) is a real
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Hilbert space 7{ with norm [l (|3, =Il*ll. Let 7, be
the complexification of 7] and set 7,=C, the complex
numbers. Let 7,, n=1, 2,-+-, denote the n-fold
symmetric tensor product of 7, with itself. Then the
Hilbert space

J=&7,
is the Fock space for the free quantum electromagnetic
field, which we introduce next,
Let Fe L3R3, dp) and ¥ c 7. Then
(lu(F): }n»]n-l

is the operator

(au(F)\I’)n'lu;uz,o ('Pu p2y°°-’p )

ooy Hpay 7wl

=i dp F@) ¥, s B Prye e ey Pauy)e

The operator a,(F) annihilates the vacuum vector in
7.
Next, af(F): 7,— 7, is the operator

(@ (FY)™, o,eeen (P1y Pay - -

(_ 1) el
=TT 8 uj|pj|F(p,~)

(n) N
Xy Uibgesdhi

b4 pn#l)

“‘ml(pl’pz’ LA D o IS ’pﬂ#l)’

FRN

where g, is the usual Minkowskian metric tensor with
signature (1,-1,-1,-1) and p, »v=0,1,2,3.

Each of the operators a,(F) and a%(F) is unbounded
and has 7 ., the algebraic direct sum of the 7 , as
dense domain in 7.

Before defining the field operator &, and its canonical
conjugate 7, u=0,1,2,3, recall that the potential ¢,
is neither unique nor observable but the field strength
&, =3d,/0x, -3%,/9x, is. Therefore, since this is
a theory of observables, we are constrained to
employ a specially defined space of functions as index
space for &,.

Let /) (R3) be the real Schwartz space of C” functions
with compact support in 22, and let )*(R3) denote the
4-fold Cartesian product of ) (R 3) with itself. Let )%(R?3)
be the subspace of /)*(X?) consisting of all f=
(fos f1s Jo» fa) €D %(R3?) such that each component f, of
f is of the form

3
Jfu= E a_f;u_u

L Tox ? u=011’2939

where f,, /) (R?) and f,, +f,,=0. Each fe)4(R?
satisfies F(0)=0, where Jis the Fourier transform

of f. Let A denote the Laplace operator in three varia-
bles and set (- A)/¢=C.

Let //* be the completion of /) #(R?) in the topology
derived from the norm

- ly*: DR =R, =[0,)
F=fos fus fos F) = I flly*
— (33 Jax |(Cr )@ 2372
Similarly, /4 will denote the completion of D %(R %)
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in the topology derived from the norm

- lls- DR =R, =[0,)
f=fo f1s fas 3} LIk,
5 el .

The Hilbert space //* is the dual of the Hilbert space
A in the pairing

(o)t xH =R
3
(fs g)l‘* (f’ g>= “Z=%)<C-lfuy Cgu>0’

where (-, < ), is the inner product of L*(R?®, d&x).

Then, the field operators &, and 7, at time zero, are
defined as follows:

()= (2001 2at(FE) + a, (FY),

7,(8,) = [2@0° T 2[a}(6L) - a, (G2,
where

F® ()= |p|-f,p),
G, ¥ =%,=p),

f=(foyfnf2’ fs) eH*, gz(gov 815 8o ga)GIL/

and, as usual, % denotes the Fourier transform of k.

Let (f, g) e4*X/ and set
Deurd=e), L) =r.

It is well known'**® that each of &(f) and n(g) is
essentially self-adjoint on 7,,,. We denote again by &(f)
and 7(g) the closure of &(f) and of n(g) respectively.

The corresponding field operators for arbitrary time
teR will be denoted by &(f, ¢) and 7(g, ¢). These latter
may be written symbolically as follows:

8(f, =1, [ dx,(x, 01,0,
(g, t)=§j'¢<n“(x, 1) g.(x),

where ®,(+,°) and 7,(-,-), 0 =0,1,2, 3, are
operator-valued distributions.

Finally, we remark that there is a unitary repre-
sentation U of 2], the Poincare group, on 7 such that

Ula, #)®,()0(a, AV = 23 (A2, (Ax +a)

where x, aeR3%XR, and (a, A)€ /). The unitary
operator {a, A )~ Ula, A) satisfies the spectrum condi-
tion in the usual sense, and it leaves fixed the vacuum
vector in 7. We note also that those elements of the
homogeneous subgroup of P! corresponding to time
reversal are represented on 7 by antiunitary operators.

3. THE ALGEBRA OF QUASILOCAL OBSERVABLES

Let x denote the complex Hilbert space of four-
component vector complex-valued functions z of the
form z=f +ig, f cH*, ge/H, equipped with the inner
product
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¢y ik Xk —~C
(@ 2) b (2, 2= (), 0 &y 8,
+i((f's @~ {f, g7
where z=f+ig, z'=f'+ig’ and as usual, (+,+)
denotes the bilinear pairing of /* and //. One sees
immediately that (z, 2z’) —Im(z, z’), is a simplectic
form on k. As substitutes for the usual canonical

commutation relations for the operators &(f) and n(g),
(f, g)cH*xH, there are the Weyl relations, 1213

W(z)W(z") = exp(= %Im (2, 2"))W(z +27),

(2, 2") ek Xk,

Here W is a continuous map from « to the group //(F)
of all unitary operators on 7 such that the map ¢ - W{tz)
of A into //(#), is strongly continuous for each fixed

z e k. As a consequence of the last property of the map
W, we have, by Stone’s theorem, ! that W(z)
=exp|iR(z)], where R(z) is an unbounded densely de-
fined self-adjoint operator on 7 for each zc k. It is
well known'” that the operators &(f) and n(g) are
related to R(z) as follows,

2()=R(Cf), n(g)=R(iCg),

where z =f+igec x with (f, g) e/*XH4: For us, the
Weyl operators {W(z): z € k} will play a significant
role in the sequel.

Next, recall that the free quantum electromagnetic
field comes equipped with a one-parameter group
{v,:t€R} of automorphisms which mediate the time
evolution of the theory—thanks to Lorentz covariance.
On {W(z):z c k}, the automorphism v,, teR, reduces
to the following transformation,

v, (W(2)) =Wz, ),
where

Z(t, x)=F(t, x) +iG(t, x)
and

(t, X)~ F(t, X), ¢, X) ™ G(t, x)
are the unique solutions of the equations

oF G
ATy

with Cauchy data F(0,%)= f(x), G(0, x)=gx), (f, g)
cH*xH,

The algebra ¥ of quasilocal observables can now be
introduced. To this end, let C = {0,};.,, be a covering
of M* with closed double cones (in M?), Then for
0eC, let % (O) denote the W*-algebra generated
by {W(Z(°,*):supp Z(-,-)S(0}. The assignment ()
—~¥% () has the following properties:

W) X0, 0,C withQ, <0, then ¥(0,) D% (0),);

(i) ¥ 0,, O, are mutually spacelike separated,
then [ %(0,), % (0,)]=0, where [A, B]=AB - BA. Then
¥ is the C*-algebra defined as the closure in the
uniform topology of Uy, (), i.e., ¥ =T, K.

(iii) The Poincare group P! is represented by
automorphisms 7, of ¥, L <P}, and we have 7,(%()))

=%(LO) where LO= {x=(x,, X)e M*: L"*xc(}.

=AF
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(iv) As mentioned in Sec. 2, Fock space 7 carries a
strongly continuous unitary representation U of /! which
implements 7,, L /}; furthermore, U satisfies the
spectrum condition.

(v) ¥ acts irreducibly on 7.

Remark: In the next section, by considering ¥ as an
abstract C*-algebra, we construct some inequivalent
irreducible x-representations of % which possess most
of the properties (i)—(v) listed above.

4. «-REPRESENTATIONS OF %

In this section, we consider a wide class of *-auto-
morphisms of % which lead to inequivalent irreducible
x~representations of #, regarded as an abstract
C*-algebra. But first, we begin with some notation.

Let {¢,=(¢,,: =0, 1, 2, 3)}2, be a complete
orthogonal set from //*. Then, given any set {a,
={a,.: =0, 1, 2, 3)}7, of infinite sequences of non-
vanishing real numbers, we can find, by the Riesz
representation theorem, a dual complete orthogonal
set {t,=(£,.:1=0,1, 2, 3)};, from // such that

<(pnu’ Emu)o = 6nm6 uvanu = 6nm6uvamv
where, as before (*, *), denotes the inner product of
L*(R?, dx).

For () €, the class of all closed double cones in
M, let 2 and £9 be defined on () as follows:

‘Pg(xo, x)=<p"(x), (xo’ x) EO’

‘Eg (xO! X) =En(x)y (xm X) EOn

Let {cr?=(cnou By =07 1’ 2, 3)}::1 a'nd {d’?:‘_" (dn(it M

=0, 1, 2, 3)}7, be two sets of infinite sequences
of nonvanishing real numbers, depending on () €(,
such that

3 0 3 [/
101_11‘1‘4 Cnu = Cpusy ]01;1‘!‘14 dyy =dpus
n=1,2,...,o, p=0,1,2, 3, exist,

In the sequel, we are interested only in the class

&(4*, H) of sequences {({¢, }r.1, {dy}z,):0<C} such
that the following two assumptions are satisfied:

Assumption (A)

5 e+ oz % + 10 €211} < =
where cf-@f=(c, v%, : 1 =0, 1, 2, 3) and similarly for
d2:£2, 0 €. This assumption is readily satisfied.
See Ref. 18 and also below, for example. As emerges
below, this assumption ensures the essential self-

adjointness of a certain operator sum with an infinite
number of operator summands,

Assumption (B)
;;SMA:”’ n=0,1,2,3

where s,, =sin*,, and 0,, =c,. d,.a,..

Remark: It is perhaps instructive to exhibit a choice
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of the sets of real numbers {c?}2,,{d%}:
belong to &(#4/*, /). To this end let J denote the set
of all infinite sequences {1}, such that max, |x,| <.
min, ’7\ ’< «, It is clear that J is in fact a linear space
under the usual notions of addition and scalar multi-
plication. For {c,.}ry and {d,, )0, =0, 1, 2, 3 be-
longing to J, set

Br®
C"‘)u = Cy,yu €XP <— W), Cnu #0, B> 0,

an®
dnouzd"“ exp (— ﬁW)’ dnu:ﬁo, a>0,
_ (=1
e zcnu dnu ’
where ]0 | denotes the Lebesgue measure of (.

Clearly, Lim, c;, =c,., lim dJ, =d,, and it is easy to
check tha

2 {ley 08I % + P 212} < e,

hence Assumption (A) is satisfied. Assumption (B) is
also satisfied, for

=(-1)"sin T (-1,

sin ¢, dy, @, =sin(-1)" % 2

Hence

w=(-1*=1 and 2,
n=1

Remark: We shall now introduce certain linear
operators on, and between, the spaces /* and //.
We need the operators in connection with the construc-
tion of a class of *-automorphisms of ¥ which we
define below. Thus, let

A:H*"H, B:/-/*"Hy T:IL/-’/-/’L:IL/_'/L/*

be defined as follows:

(Af), = §<fu,£,.u>o(cos29 -1,
=Aufus fe";/* n=0,1,2,3,

(Bf)uzgw.gnu
=Bufu feH*, 1=0,1,2,38,

(7o) =§<¢nu,gu>ocosz9 —1),5”“

Tug;n gE/—/, u=0,1, 2,3,
(L2 i (Ppys &u)oBin26,,

n=1 a

ni
ni

El.u.gu’ gEH; P":O’ 1: 2’ 3.
The operators A, B , / and / are bounded and we have
the following trivially verifiable estimates

WAFIEx< 21 f I, fet*,

IBfIZ <2blifME*, feH*, b>0,
I 78l <2lglE, get,
1L gllf« <2ellglly, geH, e>0.
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Spu =§1 =0, p.:(), 1, 2, 3.

"1 »and {a,},.; which Denote again by & (4/*, //) the class of all operators

(A,8, 7, /) obtained by employing different choices
of ({c,?};l, ate. b 0eC)e &(H*, 4) in the definition,
as above, of these operators. In the sequel, we
utilize the following assertion:

Theorem 1: The bounded linear operator
Yy LR(R®, ax) — LE(R3, dx)
given by
Y, =C*A,C+CAICTH + CAIC?A,C+C* [IB,C,

A,8,7,L)e&(4*, }), is not of the Hilbert—Schmidt
class. [Here A* denotes the transpose of A and C
— (_ A)1/4° ]

Pyoof: The bounded linear transformation Y,, is an
integral operator which acts as follows in L%(R3, dx),

& f(cos26 -1 -
Yuh: n2=1 (““—ﬁ‘—) Kh: C£n1>o C 1(pnl
+(hy C, )0 CEy + (005%1:_1“%“5

nl

X<h’ C€n1>0 cgﬂl]}
Fe1) i (h, CE,5)osin?26_ o

ny

where he L3R3, dx) and lipll, = iC*qi 2(R 3, dx),
kcR. Hence, Y, has a kernel whose Fourier trans-
form ¥,,(-,*) is

}711 (py Q) = & 17“,"(1% q)

where
Yii.n-(p9 q)

cos26,-1 1/2~

(—a'—) lp|"/*3,,0)[a]'E,, @

nl
20, - 1)
v (€082 2D pareg @) [a]i/5 ()
an
(cos 20, - 1)2

+ ——z—i——llfpmllf1 Ip|* 2% ()]a|*/2E @

sin® 26, 1)z
anl lpl

2u® e 2E ().

Hence
fdpdq |i;11,n(p’ q) |2

——21—[(Zs1n 6, +4sin?6 cos’6 ) +12sin*6,,

nl

- 8(2sin®0_ +4sin®6,, cos®0,)sin* 0 Jllg_ I71g ,IE,

16 sin® @ .
+ —‘*—"l o, 4, Ig 1%, + 42 sin? 6,

ni
+48in? 6,4 cos® 0,,) sin? 6,4

48sind,, cos’6 16 sin® 6 PR

—7;}———— llg 112 0lE, M5, + &
ni
X|lg 1%, +8sin® 6 +16s1n 6,,cos?6,

Next, since a,,=(¢,;, £,)0, it follows that
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2
a2y < @y 12 1l 113,

Hence

fdpdq ‘?11”.(9: q)lzz

>48sin*f cos'g  +sin®6,, +8sin*6
ind 2
+16sin* 6  cos® 6,

>8sin' .

Thus
fdpda |Y,,(p, @)|?
=2 [do da| ¥, 0, @)

>8 7, sin® 6, ==,
n=1

by Assumption (B). Hence, the operator Y,, is not of
Hilbert—Schmidt class. This concludes the proof.

Remark: We are now in a position to discuss a cer-
tain class of *-automorphisms of ¥ constructed by
means of the operators (4,8, 7, [)c &(H*, ). We
begin with the following assertion:

Theorvem 2: The transformation

() ()G,

(f, @e H*>xH, A,B, T, [)e (H* H), preserves

the canonical commutation relations between & and 7.

Proof: The assertion is readily verified by formal
manipulations of the canonical commutation relations
between the field operators ¢ and 7.

Remark: It is well known that an automorphism is
uniquely determined on all of ¥ if its action on the
time zero algebra % ,, which is the C*-algebra of
quasilocal observables generated by {W(z): z € },
is known. The transformation y of the last theorem
induces and is induced by a x-automorphism y ;. of
¥ described in the next theorem. The *-automorphisms
v lead to inequivalent irreducible x-representations of
9A.

Theorem 3: The transformation y indicated in the
last theorem is not unitarily implementable.

Proof: As remarked above, the transformation y
is the induced action of a certain x-automorphism y,
which acts as follows,

yr:Wiz) - W(Tz)

on elements of A of the form W(z), z ek, where T is
some simplectic transformation.!? Next, we compute
yr and hence also T,

Since &(f)=R(C'f), n(g)=R(iCg), (f, g cH*xH,
then under the action of y,

®(f)=R(CYf ) &,(f)=R(C*U+A)f)+RECAS)
or

R(f) R(C*(I+ A)Cf) + R(iCA Cf).
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Similarly,
7(g) =R(iCg)+~7,(g) = RGCU +T)g) + R(C™Lg)
or
R(ig)~ RGECU+T)Cg) + R(C™ [ Cg).
Thus, there is the following transformation
R(f+ig)r R(C*I+A)Cf +CH[(Cg
+iCA Cf +iCU+T)Cg).

Hence, we can identify the mappings:
fimCcy+AYCf+C/ Cg,
g~ CACf+CUI+T7)Cg.

These may be viewed concisely as a transformation of
H*® / onto itself, as follows:

(L] %]
A .

° .

| 85 L &3 |
F=oy fis far FIEH*  8=(80s &1» &as 8)EH,

where T is the following matrix whose entries are
operators:

— -
M, 00 0 @ 0 0 O
0 M,0 0 0 @0 0
0 0 M0 0 0 @0

p=|0 0 0 M0 0 0 g
P, 00 0 N O OO
0 pP,0 0 0 N,00
0 0 P,0 0O 0 N,O
LO 0 0 PO 00N4_‘

and

M,=CYI+A,)cC,
P,=CR,.C,

N,=C(I+7T,)C?,
Q.,=C*/,C', u=0,1,2, 3,

Let T* denote the matrix of operators obtained from
T by replacing each entry of T with its transpose.
Then, by Shale’s theorem,'® y,, and hence y, is
unitarily implementable if and only if Y =TT~ I is
of Hilbert—Schmidt class, in the sense that each entry
of Y is of Hilbert—Schmidt class. Writing ¥ =(¥,)),
where Y, is an operator for ¢, j=0, 1, ..., 7, we have,
for example, that

Y, =C", C+CAICH + cqic?y,C

+CYiAR,C.
By theorem 1, Y, is not of Hilbert—Schmidt class.
Thus the entries of the matrix Y do not all consist of
Hilbert—Schmidt operators. Hence, vy is not unitarily
implementable. This completes the proof.

Remark: It is useful to know whether or not the
automorphism vy., or equivalently y, is locally
unitarily implementable. To this end, we have

G.0.S. Ekhaguere 1755



Theorem 4: The transformation y, or equivalently
¥r, is locally unitarily implementable.

Proof: We shall prove the claim by exhibiting a
unitary operator which implements y locally.,

Let () ¢ and set

2 (el (@, (000 + (AL, (5)) ]

u=0

N

=Q,(0).

Then for each m, @_(()) is a symmetric operator
which is essentially self-adjoint on a dense invariant
domain in 7. The strong limit @(() of @ () as m
tends to infinity exists, is symmetric and is also
essentially self-adjoint on a dense invariant domain
in 7, thanks to Assumption (A). We denote again by
Q(()) the closure of ().

Let T((), () €(C, be the unitary operator
r'(0)=exp[iQ(O)].

Let ,40, R, 7Y [V, be the operators defined in the
same way as the operatorsﬁ A, T, [ but using the
sequences {¢/= (9%, n=0,1,2, 3)}> and {9

= (2, u=0,1,2, 3)}, which belong to #* and 4
respectively and the numbers {cf=(c%:1=0,1,2,3)}
and {d?=(df,: n=0, 1, 2, 3)}. DeﬁnefandgonO CC
as follows:

{fﬁ(xoy x)=fx), (x, x)e 0,
{(Xgs x)e 0,

with (f, g) e #/*X//. Then the following results may
be readily checked by means of the canonical commu-
tation relations between the operators ¢ and 7, and
by a careful use of the Baker—Campbell—Hausdorff
formula:

e((U+A) )+ 78" FO) =y 0, (F0)
=T(D)e(f)T(0),

{g0 txoy X) =g(x),

T+ 7T+ g =107
=T(Dn(gNT(OY .
This concludes the proof.

Remark : The preceding theorem has the interpreta-
tion that the *-automorphism y, of ¥ is locally uni-
tarily implementable. Indeed, the local transformation

3 (f @, (f°
(0): () v ()
m(g?) Tyeoy(&9)
with the operators &, ,,(f’) and m,.,,(g?) as indicated
in the last theorem, induces and is induced by a local

s-automorphism y,((), 0 € and one has that y((0,)
extends y..(0,) if 0,20,.

Hence vy, is the inductive limit of the net {y.(0): 0 € 8}
of local x-automorphisms of .

Definition: An automorphism p of ( is said to be
localized® in () e ( if the restriction of p to A (') is
the identity automorphism, where ()’ is here, and
hereafter, the causal complement of () e (.
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Theovem 5: The x-automorphism y,(0) of 0 is not
localized in () (.

Proof: Let T(()) be the simplectic transformation
determined by (49, 87, 79, /%), O « C. Then for
20! = f0! +4ig0" « ¢, we have

vy DY W(20")=W(T(0)z9").

But 7(0), O €, is pseudolocal'” and it is readily
checked from the explicit expression [which involves
the pseudodifferential operators (- A)*'/?] for T(()
that T(()) is not the identity operator on the subspace
of ¥ spanned by vector functions of the form 20’ =f(’
+ig0’. Hence y,;(()| gy is not the identity automor-
phism, Hence y (%) is not localized in ) (. This
completes the proof.

Remark: The preceding result is as one would expect,
for, here, we are dealing with a theory which exhibits
long range forces and therefore automorphisms of %
cannot be localized to bounded regions of M*. This
is in contradistinction to the situation in strong interac-
tion theories, where short range forces operate and
there are localized automorphisms. We refer to the
Introduction of Ref. 5 for further comments on this
subject.

Remark: We recall that each simplectic transforma-
tion T is determined by a quadruple (A4, B, 7, /)
e &(H*, H). We denote now by & ((4*, //) the collection
of all simplectic transformations obtainable by making
different choices of the quadrupule (A4, A, 7, /) from
& (H*, H).

Next, regard % now as an abstract C*-algebra and
let p, be the representation of ¥ by itself. We obtain
new x-representations p, of 9 by forming the
composition

Pr=PooV s Te&(\H*, H).

The new x-representations {p,: T €®,(4*, //)} satisfy
all the axioms in Ref. 2, except possibly Poincare
covariance. In Ref. 7, we study the question of
Poincare covariance of the *-representations
pr:Tec&H*, )} I pyy, Te@(H*, H), satisfies
the spectrum condition, i.e., if space—time
automorphisms are implemented in p, by a strongly
continuous unitary representation (of M*) whose in-
finitesimal generator has spectrum contained in
{pe (M)*: [p, p]= 0, p,= 0}, then p, is said to be
positive. By Shale’s theorem, we have that for
Ty, T,c@o(H*, H), the *- representatlons pr, and pp
of A are umtarlly implementable if and only if y®

- ¥® is Hilbert—Schmidt, where Y =T%T,-I. By
a superselection sector, we mean a unitary equivalence
class p, of positive x-representations of A. As
remarked in the Introduction, we defer to Ref. 7 the
complete characterization of the subclass of the class
of *-representations constructed above which consists
of positive *-representations of 9. In our analysis, in
this regard, we employ certain results of Refs. 8
and 20.

This author is grateful to Professor R, F. Streater
for introducing him to the theory of superselection
rules,
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The optical group and its subgroups?

G. Burdet® 9 J. Patera, M. Perrin,%) and P. Winternitz
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(Received 28 November 1977)

The optical group Opt(3,1) is a ten-dimensional maximal subgroup of the conformal group of space-time,
characterized by the fact that it leaves a lightlike vector subspace in Minkowski space invariant. Thus it
is the group underlying the symmetry structure of the parton model in particle physics. The present article
is devoted to a complete classification of all closed connected subgroups of Opt(3,1). A list of
representatives of all Lie subalgebras of the algebra opt(3,1) is given in the form of tables and many of
their properties are established (their invariants, normalizers, isomorphism classes, etc.). Most of the
subalgebras of opt(3,1) are also contained in the similitude algebra sim(3,1). We discuss a method for
extracting the “new” subalgebras of opt(3,1) from the list; these will go over into a future list of

subalgebras of the conformal Lie algrebra itself.

1. INTRODUCTION

The purpose of this article is to provide a complete
classification of all closed continuous subgroups of a
certain physically interesting ten-dimensional Lie
group which we shall call the “optical group” Opt(3,1).

The group Opt(3,1) can be characterized as being the
maximal subgroup of the conformal group of space—time
leaving a lightlike one-dimensional vector subspace
of Minkowski space invariant. According to our
opinion this group is of considerable physical and
mathematical interest and has so far not received the
attention it deserves. Indeed, this group should make
its appearance, at least implicitly, in any physical
theory in which conformal invariance and lightlike
particle states have a role to play. Much of the simpli~
city and attractiveness of the “parton” model in high
energy physics'™® is related to the fact that in an
infinite momentum frame* hadrons appear as static
collections of partons and many aspects of their kine-
matics become nonrelativistic. From the group
theoretical point of view this is related to the fact
that an eight-dimensional subgroup of the Poincaré
group (generated by L,,K,,L,+K,, L, -K,, P,, P,, P,,
and P;, where L, generate rotations, K; Lorentz
boosts, and P, translations) is associated with the
lightlike vector determining the infinite momentum
frame. This group in turn contains a subgroup iso-
morphic to the Galilei group in two space dimensions
(generated by L,, L, +K,, L, -K,, P,, P,, and P, -P,),
and this provides the nonrelativistic kinematics (in
the “transverse” plane).® If the conformal group of
space time is taken as the fundamental kinematic group
instead of the Poincaré group, then the above eight-
dimensional group is enlarged to the optical group
Opt(3,1). The Galilei group will be replaced by a
nine-dimensional group, namely the so-called extended
Schrodinger group Sch,, leaving the time-dependent
free Schrodinger equation in two dimensions invariant.

AWork supported in part by the National Research Council of
Canada.,

M Department of Mathematics, Université de Montréal,
Québec.

Québec—France exchange visitors. Members of the CNRS,
France. Present address: Université de Dijon, Physique
Mathématique, Dijon, France.
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In a previous publication® we have classified all
continuous subgroups of Sch, into conjugacy classes
and also gave references to earlier work (e.g., Refs.
6 and 7) on the Schrédinger group.

In a relativistic context Opt(3,1) as a subgroup of the
conformal group has been used by Domokos® when
constructing lightlike particle states. These were
used in the formulation of a field theory in terms of
“lightlike” components, the aim of which is to provide
a theoretical basis for the quark—parton model.
Implicitly the group Opt(3,1) has been used in attempts
to nnify dual models with light cone physics® [explicitly,
Del Giudice ef al. use the five-dimensional
“homogeneous” factor group Opt(3,1)/W,, where W,
is the five-dimensional Weyl group]. Explicitly,
Opt(3,1) and its nonrelativistic implications in the
context of conformal invariance and “Schrodinger
invariance” were studied elsewhere, ! This group
can also be used to introduce a consistent definition
of a position operator for a massless particle.'?

From the mathematical point of view, it is interesting
to note that Opt(3,1) contains all maximal solvable
subgroups of SU(2,2) except the compact Cartan sub-
group. ** It has the structure of a semidirect product
with a five-dimensional non-Abelian invariant subgroup.
A classification of its closed continuous subgroups is
hence a quite nontrivial application of a previously pro-
posed classification algorithm,*

This article can be considered to be part of a
general program, the aim of which is to provide a
complete classification of all subgroups of all groups
of interest in physics. On a more modest level, it
completes the classification of the Lie subgroups of the
most interesting maximal subgroups of the conformal
group of space time (those of the Poincaré group,'*'®
similitude group, '**® de Sitter groups,'™'® and extended
Schrodinger group® have already been obtained).

The motivation for a study of the subgroup structure
of a given Lie group has been discussed earlier, =
We would only like to reiterate its importance for a
systematic study of symmetry breaking,'®*° its relation
to the construction of group representations and bases
for group representations,®'?? and specially its relation
to special function theory.?~%®
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2. THE OPTICAL GROUP
A. The group Opt(3,1) as a subgroup of the conformal group

Let us consider the conformal group C(3,1) of
(compactified) Minkowski space. It is generated by
infinitesimal rotations L, proper Lorentz transforma-
tions K, translations P, the dilation D, and proper
conformal transformations C, (i=1,2,3, p=0,1,2,3),
These operators satisfy the commutation relations

(L, L)=€ul,, (L Kl=cKs K, , K =~€pls
[Li!Pk]:EiklPl! [Ki’P;.]:ﬁ.kPm [Ki’Po]'Pi ’

[z, P]=0, (p,,P,]=0, [p,P]=-P,,

[L,, Cl=€6nC,, [K;, C1=6,C, K, Col=C,,
[L,,c,]=0, [C.,C,]=0, [p,c,1=cC,,

[2,, €,}=2D, (P, C)=~25,,D~2,L, [D,L,]=0,

[P,, C,]=2K, [P, Col= - 2K, (D, K,]=0. (1)

Now let us consider a lightlike vector [, write it as a
difference between two otherwise arbitrary vectors
x and ¥, and find the maximal subgroup of C(3, 1)
leaving the vector space spanned by ! invariant., Thus
we have

l=x-y, P=L-P=x-y¥=0, )

and we put I =(w, 0, 0, - w). Let us first consider
subgroups of the similitude group Sim(3,1) (Poincaré
extended by dilations). Clearly all four translations

P, leave ! invariant, as does its little group E(2),
generated by L,, L,+K,, and L, —K,. The boost
exp(aK,) will transform ! into e%, the dilation e?? will
transform it into e™l. Thus (K, - D) will generate
transformations leaving ] invariant. Now let us consider
proper conformal transformations; exp(cC) will trans-
form the component [, as in:

X, +opx®

Yuteuy?
e (3)

- ’

oly)

[N TS By S
lu lu_xu yu_

where o(x) is the usual conformal factor
olx)=1+2cx + %2, (4)

The requirement x} -y =0 for ;=1, 2 implies that
Co=~Cs, ¢, =C,=0in (3). We thus obtain the transfor-
mation generated by C, - C, that leaves [ invariant.
Thus, requiring that the vector space [ remain invariant,
i.e.,

U'=e"l, (5)

we obtain the group Opt(3, 1) and its algebra opt(3,1)
(we shall use capital letters for Lie groups and
noncapital ones for the corresponding Lie algebras)
spanned by the following C(3,1) generators:

{Lss K3’ L2+K1’ LI_KZy Po; PuPz,Pa:D;Co-Ca}. (6)

If we require that the vector [ itself be invariant, i.e.,
p=0in (5), then we must omit D+ K, from (6) and this
leads us from Opt(3, 1) to the extended Schrodinger group
group Sch,, leaving the nonrelativistic Schrodinger
equation

122 @& oY
§<W+ay2>w_lat (7
invariant.

In this article, as in a previous one,® we shall use a
different basis for opt(3,1), making its nonrelativistic
aspects more evident, namely

plz_Pu pa==Py,
m=3P,=P,), t=3P,+Py),

ky=-L,-K,, kzle_sz
c=3(C,-C,), d=D-Kj,

j=L, s=-(D+K,). (8

In these notations p, generate translations, k,; Galilei
boosts (=1, 2}, m corresponds to the mass, ¢, ¢, and
d together generate an SL(2,R) group, and j generates
O(2) rotations. These nine operators provide a basis
for sch,, the extended Schrodinger algebra. Among
them p;, k,, m, j, and the time translation ¢ generate

TABLE I. Action of Opt (3, 1) on Minkowski space in light cone coordinates: x,=x,= x3; @;, v;, K

7, B, ¥, ¢, and A are real parameters; o(x)=1+px, x*=xx_ —x% — 3.

i ’

- -
Transformation X, X_ x1 x2
Py *s X *1*21841 2722842
k. -2V.X,-V,
5 X, 2v. X VJX_ X x1+v1x_5il x2+v2x_6i2
m +
X +x X_ X X,
t X, X +T Xy X,
2
. x++Bx X Xl x2
o (x) a(x) L a(x) o(x)
2y Y Y
d X, e ~ e x1 e'x,
j % X, X_ cos¢xl+51n¢x2 -sin¢x2 + cos¢x2
-2 -X -\
S € X+ X_ 5] Xl e X2
| J
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the extended Galilei group. The dilation operator d
and the “conformal” transformation (or “expansion”) ¢
were first introduced by Hagen® in the context of a
nonrelativistic field theory. Finally, the additional
dilation s is external to the Schrodinger group.

The nonrelativistic meaning of the group Opt(3,1)
is further demonstrated by considering its action on
Minkowski space, making use of “light cone
coordinates”: x, =x,*x;, x,, ¥,. The action of the
individual transformations is demonstrated in Table I.
The group Sch, can be seen to act explicitly as the
Galilei group, extended by dilations d and expansions
¢ on a Newtonian 2 + 1 space—time, namely the hyper-
plane {x_, x,, x,}. Here {x,, x,} is the “transverse plane”
of the infinite momentum frame, and x_ plays the role
of time.

An alternative manner of characterizing the optical
algebra opt(3,1) is to identify m = (p, — p,)/2 with a
“color” operator® (here “color” is used in the sense of
the frequency of a massless particle). The algebra
opt(3,1) can be characterized as the normalizer of m in
the conformal Lie algebra c(3,1), i.e., it satisfies

[opt(3,1),m]=xm, 9)

where ) is a constant. More specifically, we have A=0
for the subalgebra sch, C opt(3,1) and x# 0 for the dila-
tion s; thus sch, is the centralizer of m in c(3,1).

B. The optical group in 0(4,2) and SU(2,2) and its relation
to the similitude group

In view of the local isomorphism

C(3,1)=80,4, 2)/Z,=8SU(2,2)/Z,, (10)

where the centers are Z,={1,-1}and Z,={i, - 1,

-1i, 1}, respectively, we can also realize Opt(3,1) as

a maximal subgroup of SO,(4,2) [the identity component
of 0(4,2)] or SU(2,2).

Indeed, let us first consider the algebra o(4,2)
realized by 6X6 real matrices X, satisfying

XK + KXT =0, (11)

where X7 is X transposed. We shall use a realization in
which

00 J,
10 01
K=|0 1, 0}, 12=<0 1), J2=<1 o) (12)
J, 0 0

[rather than the usual one in which K is diagonal with
eigenvalues (1,1, 1, 1,-1, =1)]. The matrix X can then
be written as

fa b ¢ d e OT
f g &k j 0 -e
-C

X= Co_al (13)

> T
=3
=
3

(=T
i 1
< =

k 0 ~m -q ~-g =D
0 -k -1l —-p —-f =-a
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The group Opt(3,1) can now be characterized as the
maximal subgroup of SO,(4,2), leaving a two-dimen-
sional isotropic (completely lightlike) subspace of the
pseudo-Euclidean space E, , invariant. Indeed, such a
subspace can in the realization (11) be written as (the
superscript T indicates transposition)

ff=(,y,0,0,0,0), (14)
and the requirement

Xf=f', (15)
where f’ is a vector of the type (14), implies

l=m=p=q=k=0 (16)

in (13). Let us now use capital letters for a basis of
o(4,2), namely, e.g., A will be the element X of (13)
with a =1 and all other entries b=c=--:=0. The
generators of the conformal group and in particular of
Opt(3,1) [according to (8)] can be identified as

L,=H-M/V2, L,=J-@)/¥2, L;=-N\,
K,=(J+Q)/V2, K,=(-H-M)/V2, K,=-G,

P, =V2D, P,=-v2C, P,=—E-B,(17)
P,=E -B, C,=F-K, D=-A4,
C,=V2P, C,=-V2L, C,=-F-K.

A different maximal subalgebra of o(4,2) is obtained
by requiring that a one-dimensional E, , lightlike vector
space be left invariant

Xg:g', (18)

where g and g’ are of the form (14) with y=0. This is
the similitude algebra sim(3,1),

In this article we are simply interested in classifying
the subgroups of Opt(3,1) into conjugacy classes vnder
the group Opt(3,1) itself. The list of subgroups will,
however, constitute a part of a larger list, namely
that of the subgroups of C(3,1) itself. We will hence
be interested in establishing (and eventually eliminating)
the very significant overlap between subalgebras of
sim(3,1) and opt(3,1). Obviously a subalgebra of opt(3,1)
will also be contained in sim(3,1) if it leaves a lightlike
vector invariant, Taking X in the form (13) and using
(16), we see that an opt(3,1) matrix has a lightlike eigen-
vector (corresponding to a real eigenvalue), if the
equation

(7 2)6)=0) )

has real eigenvalues 1. This always happens unless

(@ -g)?+4bf<0, (20)
which requires that
bf<0. (21)

Hence an algebra that is contained in opt(3,1) and not in
sim(3,1) must contain at least one element with a
nonreal eigenvalue in the {4, B, F, G} subalgebra. The
elements of this type can be written as B— F +x{(4 +G),
where x is an arbitrary real number. In terms of the
opt(3,1) generators (8) such an element is

c+i+ks. (22)
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In other words, a subalgebra of opt(3,1) is not contained
in sim(3,1) [i.e., not conjugate under the conformal
group to one contained in sim(3,1)] if and only if it
contains a rotation ¢ +¢ or a mixture of a rotation and
dilation ¢ +¢ + ks (with & real) in its {c,¢,d,s} part.

The su(2,2) algebra can be realized by complex
4 x4 matrices Y satisfying

YJ+JY*=0, (23)

where Y is the Hermitian conjugate of ¥. For our
purposes it is convenient to choose J in the form

0 J,
= 24
7 J, 0 (24)
rather than as a diagonal matrix with eigenvalues
(1,1, -1, =1), The matrix ¥ can then be written as

¥

+it « y ia

y = B u-—it ib —y¥ . (25)
8 ic -—-u-it -of
id - 5% -p* —s+it

where the Latin entries are real, the Greek ones
are complex, and the star denotes complex conjugation.

The algebra opt(3,1) is this time obtained as the
maximal subalgebra of su(2,2) leaving a lightlike
complex vector invariant. In the realization (23) the
vector f satisfying

ff=(z,0,0,0) (26)
is lightlike since f*Jf=0 and the condition

Yf=f',
where f’ is also of the form (26) implies

B=0=1d=0. 2m

The sim(3,1) algebra in this realization leaves a
two-dimensional isotropic vector space

(#,v,0,0) (28)
invariant and hence satisfies 6 =¢=d=0.

The generators of opt(3,1) can in this realization be
chosen to be

(010 0 [0 i 00
L _|000 0 p_|0 000
“looo 1] *2T[oo0oo0 |

000 0 0000

00 ;0 00 -1 0
_loooi oo o 1
P= 1o 00 0l° 2 loo o of’

0000 00 0 0

0000 D00 O
;000 c_oooo}

0000/ “loi oo}

0000 0000

0 0 00 10 0 O
g-l0 -1 00f  ilo -1 0 o

0 0 10”73lo 0 -1 0/’

0 0 00 00 0 1
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0
0
0

[ I = i o o
oo o

00
00
00
00

[ e I o B ]
oo o =

-1 (29)

Let us comment here that all maximal subalgebras
of the conformal Lie algebra c(3,1) have been listed in
an article devoted to a classification of Abelian sub -
algebras of semisimple Lie algebras. ?”

C. General comments on the optical group

The commutation relations for the basis elements (8)
of opt(3,1) are given in Table II. Notice that w, =
{p1, Pay by, By, m} is a nilpotent ideal and is iso-
morphic to a Weyl—Heisenberg algebra, where p, and
b, are identified with momenta, k., and &, with the
canonically conjugate coordinates, and m is a constant
(the Planck constant), The factor algebra opt(3,1)/w,
~{t,c,d, j, s} has the form sl(2,7)®0(2)®o(1,1).

The Schridinger group Sch, generated by {p,, p,,
ki, kyy, m, t, ¢, d, j} has three Casimir operators,
namely,®

CV=m, C®=jm—kyp,+k,p,

C™ =2(2mt ~ p? - p2)(2me = k2 — kD) + 2(2mc — k2 ~ k2)
X(2mt — p5 = pZ) = @md + kyp, + pik,
+lopy + pok,) (30)

{for notations see alsc the caption of Table III).

None of these commute with the additional dilation s
and indeed opt(3,1) has no Casimir operators. It does,
however, have two rational invariants,?® lying in the
quotient field of the enveloping algebra, namely

Rlz(jm—klpz-f-kzpl)/m:c(z)/m, R2=C(4)/m2, (31)

These invariants can be used to characterize irreducible
representations of Opt(3,1) in the same manner as
Casimir operators (polynomial invariants), for
instance, the zero-mass discrete spin representations
of the Poincaré group extended to the conformal group,
when restricted to the optical group, are characterized
by the eigenvalue zero of R, and the eigenvalues of R,
which correspond exactly to helicity.

3. SUBALGEBRA CLASSIFICATION METHOD

We could classify the subalgebras of opt(3,1) into
Opt(3,1) conjugacy classes directly, making use of the
fact that opt(3,1) has a five-dimensional invariant
subalgebra w,~{p,, p,, k,, k,, m} with the factor algebra
F=opt(3,1)/w,~{s,j,c,d,t}. Instead we shall profit
from the fact that the subalgebras of the (extended)
Schrédinger algebra sch, ~{j,c,d,t,p,ps,k1,ky, m}
have already been classified® into conjugacy classes
under the (extended) Schrédinger group Sch, and
extend sch, and the group Sch, by the additional
dilation s. The classification both in this article and
the previous one® is performed with respect to the
identity component of the corresponding group Opt(3,1)
or Sch, (no reflections are included).
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TABLE II. Commutation relations for opt(3, 1).

kl kz P, P, m é j t c d s
; .
K, 0 0 m 0 0 E K, P, 0 K ok
K, 0 0 0 m 0 K P, 0 K, -k,
Py -m 0 0 0 0 E P, 0 -kl Py P
P, 0 -m 0 0 0 : Py 0 —k2 P, -P,
m 0 0 0 0 0 : 0 0 0 0 ~-2m
U A ,______;,_;,_,:,,_4_ e
j K, ko, b, O Lo 0 0 0 0
t >, B, O 0 0 E 0 0 d 2t 0
c 0 0 K, K, 0 t 0 d 0 2¢O
| K K, », P, O ; 0 -2t 2c 0 0
i s ; K, K, P P, 2m E 0 0 0 0 0
] ;

The subalgebras of sch, were classified using a
straightforward algorithm, consisting of several
steps. The algorithm has already been described, !*
as has its application® to sch,, and we shall not go
into it here. Let us just state that a list of representa-
tives of Sch, conjugacy classes of subalgebras of sch,
will contain two types of subalgebras—*splitting” and
“nonsplitting” ones. For the splitting subalgebras,
it is always possible to choose a basis consisting
entirely of elements B, contained in the factor algebra
F and elements X, contained in the ideal w,. A
nonsplitting subalgebra, on the other hand, is not con-
jugate under Sch, to a splitting one and any basis for a
nonsplitting subalgebra will contain at least one element
of the type B+ X with Be F and Xcw, (B#0, X#0),

The list of representatives of all Sch, conjugacy
classes of subalgebras of sch, is given in Table 2 of
Ref. 5. For the purposes of the present article we shall
denote the splitting subalgebras in that list 8,5 the
nonsplitting ones S, ,. Here j denotes the dimension of
the subalgebra and %2 enumerates the subalgebras of a
given dimension. To obtain a complete list of
representatives of Opt(3,1) classes of subalgebras of
opt(3,1) we proceed as follows,

1. Take all splitting subalgebras s, , of the above list.
Without any modification they will go over into the
opt(3,1) list,

2. Take all nonsplitting subalgebras §, , from the
sch, list. Those that do not depend on a continuous
parameter, e.g., {t +k,, py;m}or {t +em, p,, pie=x1}
will go over directly into the opt(3,1) list. If a
nonsplitting sch, subalgebra depends on one or more
continuous parameters, contained in the “nonsplitting
generators,” and connecting the F and w, parts of these
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generators, then the dilation exps must be used to

scale a nonzero parameter of this type to some specific
chosen value (we usually chose it to be equal to +1),

An example of this type is the algebra {j —elc +1)
+alky,—€p), k, +epy;m} withe==x1and a# 0. The opera-
tor exps dilates k;, p;, and m but commutes with

j, ¢, tand d. Hence in opt(3,1) we can scale a to

a==zx1, If more than one parameter is involved, e.g.,
{j+ am, c + ¢+ pm} then only one parameter can be
scaled. Thus, the subalgebra {j+ am, ¢ +{+ g} in the
sch, list contributes the subalgebra {j +em, c + ¢+ gm},
{4, c+t+em}, and {j, c + ¢} (withe=21, o and §
arbitrary real numbers) in the opt(3,1) list. All
algebras obtained from §, , by such a scaling must be
included in the opt(3,1) list,

3. Construct all subalgebras of opt(3,1) containing the
generator s (in some basis), We obtain representatives
of all of these by taking all gplitting subalgebras from
the sch, list and adding the generator s to them. Thus,
e.g., the sch, subalgebra {d;k,,k,,p,,p,,m} provides
the opt(3,1) subalgebra {s,d;k,, ks, Py, P2y M}

4. Construct all subalgebras of opt(3,1) containing
a nontrivial “coupling” between the dilation s and an
element of sch,, i.e., a generator of the type

s+aB+pX, BeF, Xcw,, a,fcR, a®+8°+0.
32)

To obtain representatives of all of these algebras,
we once more run through the list of all subalgebras
s, and §; , of sch,. For each one of them we construct

its normlaizer in opt(3,1):
nors,, =1{X|Xe opt(3,1), [X,s, |Cs, .} (33)

A new subalgebra to be included in the opt(3,1) list will
be obtained in one of two cases:
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(a) The normalizer nors ;¢ contains s and some other
nonzero element or elements x; of sch,, not contained
ins, ,. The new algebra is then obtained by taking s,,,
adding s + a,x; to it (a; are real constants) and then
using Nors, ,= exp(norshk) to simplify the element
s+ax,; as much as possible [Norsj',, is a subgroup of
Opt(3, 1.

As an example consider the sch, subalgebra
{p., by, m}. Its normalizer in opt(3,1) is {s, d, j, ¢, &,
ks, D1, P2, m}. Thus we obtain the set of subalgebras

{s=s+a,d+ay+ast+ ok, + agk,, b, b, mp.  (34)

We now use the normalizer of {p,, p,, m} in the group
Opt(3,1) to simplify the element s. The transformation
exp(— a,t/20,) will eliminate oyt if »,#0. If ¢; =0,
then expad will scale a, to any chosen number of the
same sign as a,; and hence we need only consider
ay;=0o0r a,=e==1. The transformation exp(xk, + yk,)
with an appropriate choice of x and y will eliminate

k,, and k,, unless we have @,=0, o;=~1. In this last
case exp¢j with an appropriate choice of ¢ will rotate
ak, + agk, into B, with 8= (a} + a?)> 0 and expys will
scale 8 into 1 (for 8> 0.) We thus obtain the
subalgebras:

{s+ajtpd, p, ps, mh,
{S +ajtel, py, P, m}

{s ~d+ky, Py, Day m},

and these are the only subalgebras of opt(3,1) provided
by the sch, subalgebra p,, p,, m and having a nontrivial
“coupling” with s,

a?+ g2 #0,

aceR, e=z1, (35)

(b) The normalizer of s, , may not contain s itself but
some combination of the type s + f, fe sch,, ﬁsj’k. We
take the element, add to it an arbitrary linear combina-
tion of all the elements of nors; ,, not contained in s, ,,
and then proceed to simplify by Nors, , as in case (a).

As an example consider the algebra {t +4,, p,, m}.
Its normalizer is {s - 3d, { +k,, k3, P,, by, m}. Thus we
obtain the algebras

{S —%d+ aiky+agpy, tt Ry, Ps, m}'

The transformation exp( @k, + 1% p;) will eliminate
the ok, + @, p, terms, and we obtain the opt(3,1)
subalgebra

{S "d/3; t+k17 bs, Wl}

The above algorithm provides an exhaustive and non-
overlapping list of representatives of all Opt(3,1)
classes of subalgebras of opt(3,1). Hence, any sub-
algebra of opt(3,1) is conjugate to one in the list, and
no two members in the list are mutually conjugate.

4. SUBALGEBRAS OF THE OPTICAL ALGEBRA

A systematic application of the algorithm presented
in Sec. 3 provides us with the complete list of
representatives of Opt(3,1) classes of subalgebras
of opt(3,1), summarized in Tables III-VIII (see end of
text).

In Table III we list all subalgebras of dimension
10>d= 6. Column 1 provides a name for each algebra.
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The first subscript denotes the dimension, the second
one enumerates different algebras of the same dimen-
sion. The ordering is such that we first list separable
algebras (they only occur for d=6), then nilpotent
nonseparable ones and finally nonseparable and non-
nilpotent ones. These are so ordered that the dimension
of the derived algebra increases as we proceed along the
list: perfect Lie algebras, e.g., 7, 4 are thus at the
end of the list for any given dimension. Superscripts,
e.g., 7§ Or ¥3"; indicate that the entry actually
represents a set of algebras, different (and mutually
nonconjugate) for each value of the parameters.
Throughout we have e=+1; the ranges of all other
parameters are given in column 3, where we also give
a basis for each algebra, If the range of a parameter

is not specified, then it is allowed to run through all
real numbers (o € R), The generators to the right of

a semicolon in column 3 span the derived algebra. The
normalizer norv, , in opt(3,1) of each algebra is given
in column 4 and the invariants are listed in column 5.
The invariants were calculated by solving a certain set
of partial differential equations,® and we include
nonpolynomial invariants as well as polynomial ones
(Casimir operators). Isomorphisms between different
algebras in the list are indicated in column 2. Thus,
e.g., 7§ 5 and 7;% (@ #0) are isomorphic to each other
[but not conjugate under Opt(3,1); if they were we would
have stipulated a > 0]. Similarly, »;!{® and 73} are
isomorphic to each other for any fixed o # 0,

In Tables IV-~VI, we present all subalgebras with
d=5,4, and 3 respectively. In column 1 we introduce
a name for each subalgebra. In column 2 we list its
isomorphism class, using notations introduced earlier®®
(they follow a classification of low dimensional Lie
algebras, essentially due to Mubarakzyanov®®), No such
classification is available for dimension d 6. Columns
3, 4, and 5 have the same meaning as in Table II and the
same comments apply. The two dimensional subalgebras
are listed in Table VII. Column 1 introduces a name,
column 2 gives the isomorphism class (Abelian 24,
and non-Abelian A,). Column 3 lists the generators and
range of parameters (if any), and column 4 gives the
normalizers. Algebras A, have no invariants: both
generators are invariants of the 24, algebras.

The one-dimensional subalgebras are listed in Table
VIII., This has only three columns—the name, the
generators, and the normalizers,

This completes the classification of all subalgebras
of opt(3,1). Subgroups of Opt(3,1) will in general be
obtained from these subalgebras by exponentiation, The
algebra opt(3,1) contains two commuting rotation
operators: j and ¢ +{. The exponentiation of a
generator of the type j + a(c +{) with & irrational does
not lead to a closed connected subgroup (its closure is
a two-dimensional subgroup, rather than a one-dimen-
sional one). Thus, to obtain representatives of all
closed connected subgroups of Opt(3,1), we proceed as
follows. If a considered algebra contains the element
jtale+t)lorj+ale+t)+em, or j+alc+1t)+8s], we
allow the parameter « to be rational only and then
exponentiate the algebra. All other subalgebras we
exponentiate directly.
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5. CONCLUSIONS

The main result of this paper is a complete
classification of all subalgebras of the algebra opt(3,1)
and of all closed connected subgroups of the group
Opt(3,1). These results are summarized in Tables
II-VIII.

Several applications of this subgroup classification
are in preparation. The first is the completion of a
series of articles on the “Subgroups of the Fundamental
Groups of Physics,”'*'® namely a classification of the

subgroups of the conformal group of space—time C(3,1).

Only subalgebras of opt(3,1), not contained in sim(3,1)
will be relevant for an over-all list of subalgebras of
¢(3,1). These can be directly picked out from Tables
OI-VII. Indeed, these “new” subalgebras are charac-
terized by the fact that they contain an element of the
type c +tt+as+pj+yk, +06,p,+Em, where o, 8, ¥
6;, and £ are abritrary real numbers.

i

A second application is a study of symmetry breaking
for the two dimensional time dependent Schrddinger
equation. Indeed, we are presently investigating the
equation

_1(0% g\ .oy
':z'(ax +ay2>"’at_F’ (36)

where F is an arbitrary function of say {(x, y, ¢, ¢, ¢*)
or more generally of (x, y, £, ¥, ¥*, ¥, ¥¥, ¥, ¥, ¥,,
zp’,“). For each subgroup of the extended Schrddinger
group Sch(2) we are looking for the most general
“interaction” F, such that (36) should be invariant
under the chosen subgroup. A similar problem has
already been solved in the one dimensional case.®
This type of study is relevant, e.g., for parton models
involving interacting partons.

The third application is the construction of tensors
(electromagnetic potentials and field, metric tensors,
etc.) that are invariant under different subgroups of the
conformal group.
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TABLE LI Subalgegras of opt(3, 1) with dimension d=10, 9, 8, 7, 6. The notations used for the invariants: § =2(jm - k.5,
+hopy), T=2mi—pi—p3, (" =2mc =K ~k3, /) =2md +kpy +piky+ Eypy+ poky, RE=2TC +2CT =%,

|
NAME ISOMORPHISM GENERATORS NORMALIZER INVARTANTS i
CLASS i \ |
; i
: 2,2 1
rlo,1 opt(3,1) s,J;c,d,t,kl,kz,pl,pz,m self . J/m, R/m
Tg 1 s,j,d;t,kl,kz,pl,pz,m self : J/m :
I
.. | 2
r9,2 sch2 j J,C,d,t,kl,kz,pl,pz,m 10,1 m,J,R
2 (@)~(-a) | stajse,d, t,k, ,k no R? /m? 1
!'9’3 a o | staj;c,d,t, 1° 2:P1:P2, 10,1 !
b N
r8,1 s,],d;kl,kz,pl,pz,m self J/m,D/m
|
1‘8’2 s,3,t+c;k1,k2,p1,p2,m self J/m, (T+C) /m
1
|
.. I
g3 5,353k k5P 5Pysm 9,1 J/m,T/m |
r8’4 J,d;t,kl,kz,pl,pz,m 9.1 m,J |
a .. a-1 ;
rg 5 s+ad,j;t,k .k, 5P 0 9.1 J/m, m*°T }
a . |
r8,6 (a)~(-a) s+aJ,d,t,kl,k2,p1,p2,m 9,1 none i
!
aB g . :
r8,7 (a,B)~(-0,-B) s+u3,J+Bd,t,k1,k2,p1,p2,m 9,1 none
(8=0) !
2 1
r8,8 ;C,d,t,kl:kzypl:})z,m 10,1 m,R ‘
. 2. 2
ry 1 $,1,d5t,p5Py,m self mt/(p)+p,) |
‘ . 2 i
1'7,2 S‘d,kl:kz,t:PI:Pzﬂn 9,1 T/m !
! 2,2 |
14?7’3 s,d;t,kl,pl,pz,m self ] (2mt—p1)/p2 \
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NAME ISOMORPHISM GENERATORS NORMALIZER INVARIANTS
CLASS
r7’4 j’d;kl’kz’pl’PZ’m 1‘8,1 m,J,D
r7’s j,c+t;k1,k2,p1,p2,m i r8,2 m,J,C+T
. |
Ty 6 SPAH ST O ) L 5.1 m,J,T
aB A . I
r7’7 (a,B)~(-a,-B) s+BJ,J+a(c+t),kl,kz,pl,pz,m l 1‘8,2 [J+a(C+T)]/m
(20)
|
T 8 5533k sKky,p 5PysM 10,1 J/m }
€ 1 Volee .. , i
r7,9 (e=1)~{e=-1) s+et,3,k1,k2,p1,p2 m 1'8’3 J/m
|
o3 .
r7’10 s+ad,3,k1,k2,pl,p2,m (a>0) r8,1 * J/m l
a .
r7’11 (a)~(-a) s+a3,c+t;kl,k2,p1,p2,m r8,2 (C+T)/m |
a ., . |
r7’12 (a)~(-a) s+a3,t,k1,kz,p1,p2,m 1‘9,l ? T/m
e » o |
1‘7’1:5 (a,e)~(-a,€) s+a3,3+et,k1,k2,p1,p2,m 1'8,3 | (J+eT) /m
aB . . ! i
Ty 14 (o, B)~(-a,B) s+a],d+83;k1,k2,pl,p2,m (820); g1 | (P+8T)/m
o .. :
r7,15 (a)~(-a) d+a3,t,k1,k2,p1,p2,m r9,l m
|
2P (0,8)~(-a,8) | s+taj+d;t,k,,k m r n®-lr
7,16 : g JTREGE X K0Py 0Py 7ol
| '
(B20;82-1 if a=0)
r s;c,d,t,k.,p,,m self [ (2 (2mt-p2) (2me-k2) +2 (2me-k2) (2mt-p2) l
7,17 €Ky aPs P 1 1 Pyl |
-(2md+p1k1+k1pl)]/m I
r A +ALHA (1) #(s;m)(;c,d,t) self i, (e+t) 2= (e-t)2-d? 1
6,1 17 3,8 ’ 2G4, ! i i
r A +A0 (p,)B(s+d;t,k m) \ T 2mt- 2 |
6,2 1™5,30 Py N RST 1 7,3 Py, cme-p \
0)2 <. ! 2 2 |
r6’3 A1+A5’35 (t)&(s,J,pl,pz,m) ; r7’1 t,(p1+p2)/m |
0,2 . w 2.2 |
6,4 | M1™s)35 (m)#(d,35¢,p;.P)) LT m, (py+p)/t f
| ) =
rg,s A1+A5’37 {j-e(c+t) }(s,j+e(c+t); ! self j-e(c+t), (C+T+eJ)/m }
- | i
k1+€p2,k2 spl,m} 1 | ‘
]
r6,6 .‘\2+A4’12 {s+d:t}ﬁﬁj,d;p1,p2} 1 self none j
r6’7 .1\2+A4’12 {s+d;m}6ﬁj,d;p1,p2} { self | none t
T A, +A {s+d;t,m}{j;p,,p,} | tm P2+P2 |
6,8 3,473.6 EMIBY 5P LPy | 7.1 » P1*P; |
' 1 . ! | i
6,9 | 6,14 tokyokpiPyapyem LT oM T i
e , | : .
r6,10§ s-d,pl,Pz,kl,kz,m ‘ 1'8’1 ] none '
rg,ll ; (e=D)~(e=-1) | j+e(crt) Kk -epy,kytep); ; g, m,J+e (C+T) ;
! k1+ep2,k2-ep1,m i {
|
a | .. o 2,2, a-1
T6 12 ; stad,j;t,p,Py,m (az0,1) LI | tm”, (py+py) m :
| | !
!
— . .
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NAME ISOMORPHISM GENERATORS NORMALIZER INVARIANTS
CLASS
T - ; 0 2,,2
6,13 $7d.kp3tpypym Ta 6 p,/m, (2nt-p?) /m |
T -d+k ; 2
6,14 s-dtkp,ky5t,p,p,,m T7 .2 T/m", mexp (-2p,/m)
B L1/a a,O o 2. 2 P +ip 2
e s+83,d+0j;t,p, 5P, a, atB
6,15 | T6,14 “T6,15 B1,dtaj;t,py,p,,m 7,1 (pyeR)/mt, G g, 5 o7 1*Py) /m
. 2
r6,16 J S:t,klxplapz’m I‘7’2 ! pz/m’ (zmt'Pl)/m
6,17 ! s,d;kl,pl,pz,m ‘ self none 1
| | | |
£ | .
Te,18 (e=T)~e=-1) | s,jte(ctt) sk +ep,,k,,p),m self (k,tep;)/m, (C+T+eJ) /m 1
r6,19 s,d;t,kl,pl,m self none
I
A3t Kk, ,pr Py, |z m, (2mt-p>) /p2
6,20 3t5K15P10Pys L 7,3 ’ P1)/P;
a ] 2 a-1 2, a-1
r6’21 s+ad,t,k1,p1,p2,m (a=0,¢€) r7,3 p,m R (2mt-p1)ma
Te,22 33k skysPyspysm o1 o™
6,23 ‘ dikyskpsPaPyom 8,1 m,D |
! ‘ !
¢ I
r6’24 c+t,k1,k sP1sPy,m | r8,2 i m,C+T |
|
o | } :
r6,25 : jta(c+t);k l’ 2P sPysm s g2 | m,J+a(C+T) }
1 (O‘zoae) : :
3 1Vl e . 1‘ i
r6,26 (e=1)~(e=-1) J+€t,k1,k 3P 5D,M r8’3 i m,J+eT
| !
& !
r6,27 [ J‘H!d, 1) z)plrpz)m (a>0) r8,1 m’J+U'D }
| ! ‘
6,28 | staj;kysKkyuPaPyHm ‘ *i0,1 | Tnome
ra‘B s+ajtBd;k, ,k,,p,,p,,m % r ! none
6,29 SV Pk bo's,1
©(R>0;B%1 if a=0) i
r&’s ! staj+B(c+t) sk m i T ! none
6,30 | J ikyokpaPyaPys 8,2 ‘
| (B=0) ! ‘
| ! ‘
a,e . 0 :
r6,31 1 Y stajtet; kl’ 2,pl,pz,m r8,4 : none
| | |
i 1,. | I
r6)32 ; | s-gd,t+k1,k2,p1,p2,m i self none
r cud itk pm - | m 2(2mt-p2) (2me-kS) 2 (2ne-k2) (2mt-p))
6,33 | 365855 5Py 25 AN 1 1 1
i | | —(Zmdfplk +k1pl)
TABLE IV. Five-dimensional subalgebras.
]
NAME ISOMORPHISM GENERATORS NORMALIZER\ INVARTANTS ‘
CLASS !
| | | |
‘\ ! ! }
rS,l 2A1+A3’4 (p1)$(p2)@(s+d;t,m) 1 r7,1 pl,pz,tm
r 24, +A (ML) ; ) | m,t,plip2
5,2 17%3,6 m) J3P1oPy | T7.1 »EP1 7Py
‘ 1 2 2 2
L 24 445 (s)B(j)®(;c,d,t) ! self Lo, iu(ert) - (e-t) T -d
r LO2A0+A (j)w(m)s»(;c,d,t) ! T 3j m(c+t)2—(c—t)2—d2
| Ts.a 1773,8 2C s ! 6,1 ’
J ‘ | .
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NAME TSOMORPHISM GENERATORS NORMALIZER INVARIANTS
CLASS
il
: . . | 1
rS,S A1+2A2 (§)®(s;m)#(d;t) self j
TS 6 Ayths 3 (s+d;m)®(d;p,,p,) Te 7 p,/p,
AtA &;mG 5P, »ps) 2,p2
r5’7 2+ 3,6 (s+d;m) (J:pl:pz r6,7 pl Pz
A_+A +d;t)8(j; ) T | 2+ 2
5.8 236 (s+d;t)9(j;py 5P, 6,6 | P1'P2
1 L
i p,tip,.ia
o la] 1O +ad | 2, 2. P171Py,
TS g A2+A3,7 (s+d,m)w(3+ad,p1,p2) (a=0) 6,7 i (p1+p2)(pl_ip2
‘ p,-ip, ia
a o] Y tas - | 2 2 P17'P)
rS,lO A2+A3,7 (s+d,t)@(3+as,p1,p2) (a=0) } r6,6 (p1+p2)(p1+ip2)
|
. ! 2 2 2
rg,ll Ay*As g (s+aj;m)®(;c,d,t) Lot (c+t)“-(c-t) -d |
. 2_ ‘
Tso12 | Mg (pp)®(t,ky5py,m) t7.3 Py.m,py-2mt
A eal’d a(d;t m, (p2+p2) /t,p, /
Ts,13 14,5 (m)®(d;t,py,py) 7,1 » Py TP /P /Py
1.3 2, 2
s 14 A1+A4,5 (£)8(s;p,,P,,m) 1 t,py/m,py/m
| N .
a 2|al, |a] e 2.2 P17iPp e 2. 2
o5 | Aty e (£)8(5+as;p,,ppom)  (a20) T, SO G o /e
o 2|al, lal o 2.2, 2. 2 P1tPy 4
Ts 16 | M6 (m#(j+ad;t,py,p,)  (20) ™71 m,t/(Py+P5) (p1+p2)(51j;¥2?
T A +A0 (p,)®(s+d ;ky,m) r P
5,17 1"%,9 2 Pprfye 6,17 , P2
i
€ 1 . i [ i .
r5,18 A1+A4’9 (3-5(c+t))$(s;kl+ep2,k2—sp1,n) ré’s : j-e(ct+t)
[ . € . i
rS,lQ A1+A4’10 (j-e(c+t))® E r6,S j-ef{c+t),m,C+T+eJd :
(jre(ert) sk +ep,,ky-ep, ,m) | |
€ ) e,0
r5’20 A1+A4’10 (k215p1)$ r7’7 k2+ep1,m,C+T+eJ
(]+€(C+t);k1+€p2,k2-€p1,m)
o A +A,a, (G-£(c+t))® re : j-€(ctt)
5 21 1%, ] ' 6,5 1 J
(jt+as;k +sp2,k2-ep1,m) (az0)
rs’22 A1+A4’12 (s+d)$(s,j;p1,p2) self s+d
Ts23 | MtAg12 (m)®(d,j;p;>p,) 6,7 % m
{
Ts,2a | Mtqo12 (1)€(s,35P1,P,) Y6 | °
Ts,25 | A5 kyokpsPpsPyim T10,1 n
. 0,-1/3
5,26 | P55 trk) s kgaPy sy, 7,16 m
\
T A1 »1,1 -d;t ‘ t
5,27 5,7 $7d:tPy Py To,1 | Y/mPy/mpy/m
| |
o X,X,2Z . o 2p0-1
r5,28 A5,7 s+ad,t,p1,pz,m (az0,¢c) r7,1 mt, le R Pl/P2
x=l%g-, z=-0 if fal<1
a-1 1 .
X=o o ey if  Jal>l
1 ) 2
s 29 A5,11 s-d+k;;t,p ;P M 7 2 T/m”, mexp (-2p, /m),p,/m
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NAME ISOMORPHISM GENERATORS NORMALIZER INVARIANTS
CLASS
B a,B X P1-1Py
» 3Ys2 : . a R 2, 2,0 _B-a 1 2.1a
r5,30 AS,13 J+as+Bd,t,p1,p2,m (aBz0) 1‘7’1 tm ,(p1+p2) m s m(iI:TEZ
x=-3 y=é:g- 2o+ if|als]a
g YT 2p F7Te
3 a-B8 1 .
x=—;, =—2—;, Z:m 1f;(!] >IS
€ 2,1 A € 2
5,31 | Asi19 S;k tep,.ky,ppLm T6,18 (kptepy)™/m
2,1 ) 2
Ts 32 | Asi19 $;ky Py sPpsm 7.3 py/m
3/2,1 i,. 3.2
rs,33 A5,19 s—gd,t+k1,pl,p2,m self pz/m
1,1 ek 0,0
Ts.34 | A5o10 s-d;ky5py,pyHm T7 14 Py/m
r a0t d;k n
5,35 | 5,19 3%1sP15Pp> T6,17 m
a X,y . 2 a-1
r5,36 A5,19 s+ad,k1,p1,p2,m (a=0,€) r6,17 pzm
.2 l-a .
e * U1t if o
X 2 =1 if <0
Ta ' 77 .
1 p
5,37 | As5,20 s=dky,k 3Py spyem 6,9 mexP("}f%
€ 1 . 2
Ts.zg | A5 23 stet;k P Pysm T6,16 py/m
a,e |€]/2,lal/2 . . 2.
rs,39 AS,ZS J+s(c+t)+as,kl+ep2,k2,pl,m r6,18 (k2+€p1) /m
(e=0)
€ 0,1 . _ 5 €
r5140 A5,26 J+e(c+t)+k1 apz,k2+sp1, r6.10 m
kl+ep2,k2-ep1,m
2 1. 2 3,4
r5,41 AS,SO s—gd,t+k1,k2,p2,m self [p2-2m(t+k1)] /m
= AL s,k + 1£ 2,
5,42 | “'s,30 SR Rt se (py-2mt)/m
r A0 s+d;t,k. ,p,,m r 2-2mt
5,43 5,30 i,KysPys 7,3 Py
T A0 s+d+p,;t,k,,p,,m r p2—2mt
5,44 5,30 PyilsXysPys 6,2 1
-1 B
Ts 45 | 25,30 d;t,kp,py,m T6,19 m
a X . 2 a-1
r5,46 AS,SO s+ad,t,k1,p1,m r6,19 (p1 2tm)m
(aze ; x = (1-a)}/(1+a})
0 . 2 2
5,47 | As,32 s-d;t,kp,py,m T6,19 (py-2mt)/m
%)% 2
r5’48 AS,SS s,d,t,pl,m self tm/pl
T Ao’l s,d;t r /
5,49 5,33 »43T4Py 2Py 6,6 P1/P)
_1;1 .
rS,SO A5,33 s,d,kl,pz,m self k1p2/m
0,2 . 2, 2
T 51 As,ss $,3;py,Py,m T (py*P5)/m
e 0,2 . 2.2
> 2 - +
575y | A 3s S+at,j+et;py,p ,m Te 3 (pytP,) /m
13 0,2 . 2, 2
¥s5,33 | A5)35 STEt, 3P oPy T6,3 (pyp3) /m
0,2 . 2 2
T5 54 | A5)35 d,35p) 5Pyt Ty (py*p;)/t
€, 0,2 . R 2.2
rS,SS A5:35 d+£m,3+am,p1,p2,t r6,4 (p1+p2)/t
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NAME ISOMORPHISM GENERATORS NORMALIZER INVARTANTS
CLASS
€ 0,2 . . 2.2
r5,56 AS 35 d;J*meplxpzxt r6,4 (P1+P2)/t
R 2,2 2
rg 57 Ag ;5 s-d,jittem,p ,p, self (pytp,)/ (trem)
,2/(1- R 2.2 -1
T cg Ag sé( ) s+ad,j;p,pym  (@20,1) o 4 (py*pyIm”
3
1- X 2 1-a
oo | ACRID | sad,iipppyt (20,1) Te 6 (pr+p3)%t
-ip, .
2 ,0 . Py 2. ia
r§,60 AS!;L J+assd;Pl’p2:m (Ctzo) r6,7 m(w)
ip s
a 2|al,2 . . 2 {ia
s 61 A5,35 jtas,d;py,py,t (a20) T 6 [t/[p1+p2)}(p r,
P +1]?
a,B X,y . i 2 1 2 1(1 ~a)B
r5’62 AS,35 5+ad,]+6($*d),pl,P2,m r6,7 (Pl Pz)(
2
(a=l,B=0; X=21ﬂ|, )’=1—_07)
p,tip, -
a, B X,y . . (Ot 1) ~a 1 T2 1(e-1)8B
r5j63 ASiSS s+ad,J+B(s+d),p1,p2,t r6,6 (p1+p2 (———-—pl —)
20
(azl,B20; X=2|B”y=aj
i
a .
TS sa | As,36 s,d;k, Py tap,,m self | (ky (py o))+ (py +ap, )k, +2md) /m
r“;e A . E 2 2 .
5,65 5,37 s+u(c+t),3;k1+ep2,k2-ep1,m ré,S ((klﬂ»:pz) +(k2-ep1) -4em3j)/m
. A s,ctt;k.+tap,,p,-ak,,m(0<|al<]) self ((k,+ap )2+(p -ak )2-2(1+a2)m(c+t))/m
5,66 5,37 ’ ’ 2’71 2’ B ' 1 2 1 2
rse€ A s+aj,c+t;k, +ep,,p, -k, ,m rt | ((k,+ep )2+(p -ek )2-4m(c+tJ)/m
5,67 | 5,37 P CTLIK e P TE 6,5 175P; 17%%2
a,B .. , B € R 2'4em .,
5’68 AS,37 s+a3,3+8(c+t),kl+ep2,k2 Pl T g ((ky+ep,) +(k €p; —1+€B(J+B(C+t)))/m
{(Bz0,-¢)
TABLE V. Four-dimensional subalgebras,
i NAME ISCMORPHISM GENERATORS | NORMALIZER: INVARTIANTS
) CLASS ‘ ;
= i ‘ \
{
i r4’1 4A1 : t,m,p;,P, 1‘9,1 ¢ t,m,p;,p,
b ; |
R : 1
4,2 | 2A1+A2 (p1)$(p2)&9(s+d;t) ' r6,6 pl,pz
L ; :
i T :
1'4’3 | 2A14-A2 J (pl)tﬁ(pz)&)(s+d;m) r6,7 Py P,
1 T +
D T4e 0 A Co(3)emye(d;t) 5,5 Cog,m
: ! ] H
| Tys o 2AptA L (ye(t)(s;sm) Te o it
; i |
I .
r4’6 ; 2A1+A2 ; (jre(s)w(d;t) self i,s
| | % ‘
r4,7 ‘ 2A1+A2 ‘ (j)e(t+c)B(s;m) | self j,t+e
| | |
4,8 O 2Ap+A, ! (j)e(d)®(s;m) | self j,d
| 1 |
| a - (D L ?
Lr4,9 ! | (dit)e(s+aj;m) Ts s . none
| 1 |
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NAME ISOMORPIITISM GENERATORS | NORMALIZER| INVARTANTS
CLASS
a . . ;.
% 10 24, (j+ad;t)®(s+Bj;m) (a=0) } TS g none
1'4,11 2A2 (d+s;t)@(s;p1) self none
r4’12 2A2 (d+s;k2)$(d-s;p1) ! self none
— e R i
r4’13 2A2 (d+s;m)@(d;pl) ; self | mnone
i |
‘ , ] 0 !
Th14 | MM i (py)o(ky,pym) 3,6 PR
! ) T 6,-1/3
4,15 A*As | (py)9(ttky,pysm) 7,16 | py.m
; E . €,0
i r4’16 i A1+A3’1 1 (k2+ep1)w(k1+sp2,k2—epl,m) r7,7 k2+€p1.m
% L
T T T
€ | | s _ . ! € s
r4,17 ; A1+A3,1 ; (j s(c+t))$(k1+ep2,k2 epl,m)A r6’5 i j-e(c t),m
; ; |
T \
r4’18 g A1+A3’2 i (pz)w(s+d+p1,k1,m) l r5,17 Pysm exp(Zkl/m)
: | |
: s i
RIS - A C R IR 2 . T6,6 tp1/P;
T420 0 M3z (m)®(d;pypy) 6,7 mP /Py
i ]
f : %
4,21 | Ap*As 3 % (py)w(s+d;ky ,m) o7 Ppky/m
‘ i
422 | ArAg (j)®(s-d;t,m) T I 5,t/m
i |
1 [ !
a5 M3 - (srd)@dipy.py) - Ts,z2 s+d,p,/p,
2 : : :
H i . h 0 v
4,24 1 Ap*Az 4 | (ppelsHdit,m) . Te,14  PpT
———— - ‘ - ; .- ' H }
Th2s 0 Mty (p)P(s+d+p,it,m) Ty | Ppotm
|
r4,26 A1+A3,4 (j)(s+d;t,m) rS,S j,tm
T4,27 Al*Az.4 (m)(d;k;,py) 5 50 m, kP,
T | A +A1/2 (m)e(d;t ) T m pz/t
4,28 | 173,85 | it.Py 5,48 Py
{ |
) 1/2 ‘ ] 2
Taae 0 MMy | (B9pM | Tsas o BPU/T
€ A, +aL/2 (5-e(c+t))B(s sk, +ep.,,m) self j-e(crt), (ko +ep,)>/m
4,20 1"%3,5 - U-E PLS3KyYEPys J B B
o A +A% j ) (s+ad;t =a if j,tm”
4,31 135 (j)®(s+od;t,m) (x=a i i Ts s i,
0<|a|<l, x=1/a if [al>1)
|
‘ - 2 2
Tes2 0 Mfze 1 (B1PUSPLRY) 7,1 | ©Py*Py
r i R 2.2
4,33 A1+A3,6 w (m)‘ﬁ(J;pl:Pz) 1‘7’1 m1p1+p2
i
rs A +A | mys(iretsp, ,p,) r " mplepl
4,34 17736 PLITEL;P).Py 6,3 . MPy*Py
{
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Burdet et a.

NAME ISOMORPIISM GENERATORS l NORMALIZER INVARTANTS
CLASS i
€ A +A (t)(j+em; ! T t p2+p2
4,35 1"%3.6 JTEM PPy l 6,4 F17h2
€ . 1 2, 2
L AjHAg 6 (t+em) (3;p1,P,) L Te12 tem,py*P,
ELERCH B A —— - ‘ o e d
r4’37 A1+A3,6 (t+€m)td(]+em,p1,p2) (e=%1) 1 rs,2 t+sm,p1 2
T A +A (s+d)®(j;p,,P,) ‘ T s+d p2+p2
4,38 17%3,6 iP12Py 5,22 :P17Ps
a {al e 2 2, P17P i«
T4 39 Apths (t)®(+as;p;,p,)  (ax0) T6,6 t,(py pz)(ﬁzzgﬁzo
+ip, j
a o o 2, 2, P171Pp ia
4,40 AjtAg (m)#(j+ad;p,,p,) (az0) Te 7 m,(p1+P2)(p1_ipz
: +ip, 3
o |a| . . i 2. 2. P1 2,10
4,41 Ajthg g (s+d)®(j+ad;p;,p,)  (a=0) LT, s+d.(p1+p2)(p1_ip2)
|
r A +A ()9Ge,d,t) r i (c+t) 2= (e-1)2-a?
4,42 17%3,8 JIBLC, e, 6,1 s
r A +A m)e(e,d,t) T m, (c+t) - (c-t)2-d?
4,43 1773,8 PTeT 6,1 :
a iy . 2 2 2
T4 44 Ap+Ag o (s+aj)®(;c,d,t) rg | s+aj, (c+t) - (c-t) -d
|
s A +A (jrem)®(5¢c,d,t) r P jeem (c+t)2-c-t)2-d2
4,35 17%3,8 i¢,d, 5.4 | dvem,
i
T A 1 ko ,t; m Y r m 2-2mt
4,46 4,1 | f1otPy L 77,3 Py
L
€ A k,+ep,,t; m | T im 2—th
4,47 4,1 1%P2: %3Py - Te,16 Py
|
I 2
‘ r4’48 A4,1 t+k1,k2,p2,m | r6,32 } m,p2—2m(t+k1)
; : -
r4,49 A4’1 t+k1,k2+ep1,p2,m r5,26 m,(pz-em) -2m(t+k1)
T Al | s-d+k_;p.,p,,m 0oL m exp(-2p,/m)
4,50 4,2 ‘ 1'P1°Pye . Te,29 1
r A s-d+k,;t,p,,m - m exp(-2p./m), (p>-2mt)/m?
4,51 4,4 1Py 5,47 /™ Py
1/3,2/3 1., 3 3,2
r4’52 A4’5 s-gd,t+k1,p2,m self (t+k1) /m,pz/m
172,172 ) 2, 2
4,53 Agys d5t,p1P, B Py/t,py/t
1/2,1/2 . C 7, 2
T, 54 /\4’5 $;PysP,yom ‘ LY py/m,p,/m
c 172,172 ) 2 /m,p2
T4 55 A s S*EL;Py P,y .M T 3 pl/m,pz/m
€ 1/2,1/2 i 7, 2
T, 56 A4’5 d+em;t,p,,p, Te 4 pl/t,pz/t
Al’1 -d; T /
4,57 4,5 S74iPy Py | Tsa Py/ms py/m
T Al’l s-d;t m T /
4,58 4,5 3tsPps 6,19 py/m
€ Al’1 -d;t+
4,59 4,5 S-A trem,p1LPy s 57 (t+em)/py,p,/py
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NAME TISOMORPIIISM ; GENERATORS l NORMALIZER INVARIANTS
! CLASS %
T 1
o ! X,y : . | 2a l-a Za I-a
a0 | M5 - stadit,py.py  (020,1) ' Te6 ppt Pt
; _a-1 o-1. . :
; (X, y)=(5= »557) if «<-1 or
| . _ . 1 |
: I (X:Y)-(Eji-,l) if —1<a<3 |
| ‘ f
| ‘ 3
. ; X,y : . : 2 1-00 2 1-o
i r4,61 i A4,S : s+ad,p1,p2,m (a20,11) i r6,7 pym »Pym
. _d-a l-a .
! ! Y= (=5 ) if -l<as3
i ! 1
| | =5 1) if <1 or 3<a |
3 r e ! l
i . ‘
: |
a X,y \ ) ; : 2 1-0
Tae2 ; Mos stad;t,p;,m  (a20) | T5 48 | tm* P
1 4o ! !
| Cxy)=(- :32—lﬂ if a<-1 or |
| a’ 2 1< | ]
1 :
| (o=, if -l<a<l | |
\ - | 1
I
o | X,y . ! i 2 a-1 .2, 1+a
r4,63 | A4,5 s+ad,k1,p2,m (a=l) rS,SO } pom kl/m
(x,y)=(—1—‘i‘-,1~;ﬁ if 0sasl
| :
‘ (x,y)= (1+a T;ED if l<a
|
i
: Py*ip,
o | 2|a| [a] D 2,1a
r4’64 \ 4,6 J+ud,t,P1,P2 (a=0) r7’1 t/(p1+p2) t( -1p )
i i
‘ !
i : -
o 2lal, el : . | 17'P2 da
r4’65 l A4,6 J*+as;p,,P,,M (az0) 1-7'1 ‘ m/(pl Pz)’ m(P +1p )
J : 1 -
ae | 2lel,lal : P17"P2 ia
Taeet M6 i Jtostet;p,,p,,m  (ax0) T 3 | m/(p1+p2) m(p +1p
f | : .
&€ 2[“|,!°‘| \' s . ! i +1P2 ia
Tye7 A4,6 | J+ad+am,t,p1,p2 (a=0) | Te.a f t/(p1 pz) t( p2)
a,e 2lal, ol . ) i e ; —ip2 ia
Ty 68 Ays jta(s-d);t+em,p,,p, (az0) ? Tg 57 (t+em) /(p1 pz) t(p ¥ip, )
%
T
a8 Xy . B2 )8 Py 1Py ig
r i A , jtas+Bd;t,p,,p T, (p ) (—)
4,69 f 4,6 : (020 ,B20) 1°F2 6,6 1 P2 p,-ip,
i H(x,y)=(-28,a-8) if a2 ;
; | 1
“ ‘ (X,)’)=(26,B-a) if o<B ;
: I
3 | p,-1ip, ;
o, 8 X,y ' . B-a, 2, 2.0 P17'Pria
4,70 P46 jrastBdipy,py.m 6,7 m " (py*py) ’m(P1+iP2)
(ax0,B20)
‘ ‘ |
([ 06Gy)=(2a,0-8) if a2B ! !
f ! !
(x,y)=(-20,8-0) if a<g ‘:
i |
a { . ' € !
r4,71 i A4,7 s+at,k1+ep2,p1,m (ax0) i r5’42 ' none
— o S
T2 M7 | stetikpppm - Ts,46 none
J |
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~— ! ! Tt 1

} NAME ’ TSOMORPIIISM | GENERATORS } NORMALIZERF INVARIANTS
; CLASS ; ‘

| i | S

o I . ! o
{ r4’73 | A4,8 d,kl,p1+ap2,m & r5,64 m,2md+k1(p1 ap2)+(p1+ap2)k1
I | !

] I I |
a 0 T . 1
! r4’74 T A4,9 ks+d,k1,p1+up2,m j r6,17 none
| | | i 7
D ! . ! |
E r4’75 2 A4’9 is+d+p2,k1,p1+ap2,m ; 15’17 | none
\ | ' z
T a 1/2 [ 1. I
! r4’76 A4’9 is-gd,t+k1,pl+up2,m . self l none
i ; i i {
‘ : 1 .
4,77 1 Pao Lsikpppam | r5,7 | none
: I |
O Y (S+a('—e(c+t))'k +ep,,k,-ep.,m| ro | none
4,78 | 4,9 | J PR1TEP B TER I g g J
B {
| i !
e ! . I e |
} r4,79 { A4,9 /S,k1+€p2,p1,m | r5,42 | none
| —+ { | Aﬁ
Lo : 1 R _ | o
| Ta,s0 1 M9 | s3kprapy,pp-aky,m (0<|a]<1) | Tses | e
| ; t —s 4
a,8 X ! |
i { .
‘) I‘4’81 ; A4,9 ‘ Sfdd,kl,Pl*'BPZ:m i I5’64 | none
‘ , (aze, a=0; if B=0, aB=0) '
i i ! E
1-a . ! ;
T— ! [
% =1 if a>C
I I la ‘ ‘
= t
! . X 1T, if o C J
Cxt i A ‘ jte(c+t) sk, +ep,,k,-ep, ,m 41 T m, (k, +ep )2+(k ~&p )Z-Zm (j+e(ctt))
‘Ta82 . T4u10 ! K TEPR X Ry 82 | Mot TEP, 27" )
| | . !

5 [ oA “jtaf{ctt);k,+ep,,k,-ep, ,m ] s m, {k,+ep )2+(k -€ )z-gg—m[’+a(c+t))
| T4,83 | “4,10 : ; 27527 P 6,5 N R 7P Terd™Y
f L U (Jal=1) |

] L —_
Ty LA | c+t;k vep,,py~ek,,m Poxf m, (k. +ep.) %+ (p, -ek.) -am(c+t
| Tas Mo | Ctikyrepy,pymeky, | Tes »kytepy) +ipy ek, )
i )
€ , o . L 2 2 .
\ Ty85 1 M1 a i+E(C+ti+El EP%, CTe 1 m, (ky*ep,) "+ (ky-ep)”-2me (jte (c+t) +k; -ep,)
1 | X1 TEPps %y 7Py : i
1 H !
‘ o ; i ' o ! 2 2 2
r4,86 E A4’10 ] c*t,kl+up2,pl—ak2,m {laf<1) : £1:16 ! m,(klfapz) +(p1-ak2) -2{1ta")ym{c+t}
; a,B,eﬁ x . ] €
f r4,87 : A4’11 s+a3+3(c+t},k1+ep2,k2-ep1,m : rﬁ’s none
. {a+teB=0) , :
i ‘
i (x = ! ]
! ~ Totes : ,
2 % crtras;k Km (0<a<l) i
' Te,88  f4m P ertrasikyrapy pyrakyum (Ocasly g g 1 mone
} ; | i
Tase 0 P12 | S133P1oPy _ Te,6 | mome
! . !
; r4)90 A4’12 ‘ d:j;Pl,Pz !‘6’7 ? none
[ A ! .. T
JTaer o A2  sted,jipy.py  (@20,1) T2z ; none
1 | .
Loa,B A L. .. 7

I‘4’92 ‘ 4,12 I jtas,d+B8j ,Pl ;Pz (aB=0) | 1‘5’22 ‘ none
S A fa j+em;p r
;4,93 4,12 G 3PPy 5,23 | none
1 |
feS28 A i d j ; o
PTa0a | M4L12 | CYEM, JTAIP) Py | Ts,23 none

: i ;
’ L
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\» NORMALIZER

!

NAME ISOMQORPIHISM ] GENERATORS i INVARTANTS
CLASS ! i 'i
s A ?‘ t,3; [ ; ]
4,95 4,12 [ SYE:IiP1sPy b T5,24 | none
i ! L
o, ! e o
496 [ A2 § s10t,j1et;p,p, | Ts,2 { none
TABLE VI. Three-dimensional subalgebras.
= T T T =
i NAME ! ISONORDPIIISM ¢ GENERATORS i NORMALIZERi INVARTANTS
, ‘ CLASS | 5 ,
+ ‘ - T
I ‘ “ t
| 5,1 A [ PysPpom To,1 | PPyl
i H ]
; T | ‘f T
3,2 | A { PpPy0t ! PpoPpt
a i i ‘f
i i
T3 | M I pyomt L Tz | Ppmt
I - ‘ ‘ Q0,0 A4
‘ - ‘ ;
: ’ \
T34 | M  kpapyom 7,04 | KpPoom
l : : —— [
€ i ) : - !
| rs’s i .'SAl ; pl,pz,t1em : r6’12 i pl,pz,t+em
| ; 1 \
B 3A | t+k b 9 ! m,t+k
ER I | P2t 6,32 | g™t
; |
T — ™ -
| r3’7 | 3A1 : j,t,m ! rS,S Lj,t,m
s 1 1 —
[_—- - i € .
; r3,8 : 3>A1 I J-e(c+t),k1+ep2,m | r5,18 f 3j s(c+t),k1+ep2,m
— * |
T3 g ! 3A, | s+d,p; P, Ii 5 29 | 5+d,p;,P,
! L ; |
1 1 . ( ' . t
r3,10 : 3A1 ! 5,7,¢ , r4,6 f 5,1
i ‘ | !
1 T 1 Ty et
! rS,lI ! 3A1 i j,ctt,m | r4,7 [ j,ctt,m
! | | .
: +
b ‘ I j,d,m
T30, } 3A Li,dm t\ T, g ‘\ 3,
|
i ; | self | s,j.cet
i 1 ! . 8,],C*t
i rs’13 : SAI l's,j,ctt bose | S,]
' | . i !
| 5. I s s
r3,14[ 3A1 ‘1 5,j,d |‘ self ‘ s,j,d
i 1 |
r [ AL +A r(')®(s~m) r | j
3,15 172 ;LS L Te,l |
; : : |
r3,16 1+ 2 3 (J)\”( )t) i rs’s ‘. ]
| . i 1(
[+ .. |
T3 17 \ A TA, I (m)®(d+aj;t) i S5 i m
| ; | i
a | i . | '
r3,18 \ A1+A2 j (£)d(s+aj;m) rs,s I t
T A +A 1 G)w(stet; [ r L »
r3,19 [ 1+ 2 i (J) (S € ’m) I 4’5 ; J
: ' i -
' . . | I
{ r3’20 : A1+A2 ! (p1)$(5+d,m) : rS,6 l P,
T . — T
r3’21 ! A1+A2 ! (pl)w(s+d,t) f r5,49 | Py
R ' i |
b g T
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NAME ISOMORPIIISM GENERATORS NORMALIZER INVARIANTS
CLASS
r3,22 Aj+A, (pl)ua(s+d+p2;m) Ty,3 Py
3 . . .
*5 03 AL+, (j)®(d+em;t) T4,4 J
a,e . . :
5’0 A1+A2 (j+em)®(d+om;t) T4,4 Jtem
a,e . ] .. .
r3,25 A1+A2 (j*et)®(s+aj;m) 1‘4’5 jtet
a D8 . .
r3’26 A1+A2 (j)®(d+as;t) (a=z0) r4’6 j
rm’B A +A (s+aj)®(d+Bs;t) T s+aj
3,27 1772 J ¥ ; 4,6
a,B . . .
T3 28 Aj+A, (G+a(c+t))B(s+Bj;m)  (az0) T4,7 jro(c+t)
s — )
r3,29 A1+A2 L (j)®B(s+a(c+t);m) r4,7 b
o .. ..
rs,30 A1+A2 (c+t)e(s+aj;m) r4’7 c+t
1'3,31 A1+A2 (pl)@(s+d+p2;t) r4’2 Py
a,B . . .
r3,32 A1+A2 (jtod)®(s+8j;m) (a>0) r4’8 j+ad
[+ .
1'3’33 A1+A2 (d)®(s+aj;m) r4’8 d
Tyl Mty (t) 5(s;py) 4,11 t
r3’35 A1+A2 (pl)tﬁ(s+d;k ) r4’12 P,
r3,36 A1+A2 . (m)éﬁ(d;pl) 1‘4’13 m
€ . .
r3,37 A1+A E (§)P(s-d;t+em) self j
[ { s . .
r3,38 A1+A2 ; (J+e(c+t))=9(s;k1—ep2) self jte(ctt)
|
r:,‘,:,’9 A1+A2 ! (s+d)<i)(s—d;p1) self s+d
€ . 0
3,40 As,1 kppysm T9,3 n
€ .
T34l 231 kytepy,ky-epysm 3,2 m
2 A k, +ap,,p,-ok,;m  (0<]a|<1) 2 m
3,42 3,1 114PosP ~0Kys 7,11
€ s 0
T34z | 23,1 Pyteky,pyim T7.12 m
o . 0,0
T3 44 Az q kispytapyim (0<a) Ty 14 m
o .
r3’45 A.’S,l k2+a(t+k1),p2,m {a=z0) r6,32 m
& A j-e (c+t)+k. + k,-€p, ; rt
3,46 3,1 I-e T I B S L 4,17 m
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NAME ISOMORPHISM GENERATORS NORMALIZER INVARIANTS
CLASS
2]
rs,47 A:,)’2 s+d+pl+ap2,k1,m r5,17 m exp(—Zkl/m)
T3,48 | "33 $iP)sPy T6.6 RIU
f
3,49 Az 3 d;py P, Te,7 | Py/p,
r3,50 A3,3 s+d;k1,m r6’17 ‘ kl/m
% A -d+aj;t T ? t/)
3,51 3,3 | STararst.m 5,5 um
rS,SZ A3,3 s+d+p2;k1,m r5’17 | kl/m
o !
T353 | A33 stad;p).p, (00,1) Ts22 | P1/P
$
[3 . |
3,54 Az 3 dtem;p;,p, '5,23 Py/P,
|
E i
T3,55 Az 3 S*TetiPy»P, Ts o4 | P/P
A d; |
T3,56 3,3 s-d;py,t 41 | P/t
!
[
T357 | 3.3 s3ky 5Py Th12 1 K/
- :
r3,58 A3’3 s-d,t+em,p1 self (t+em)/p1
r3,59 A:,)’4 st+d;t,m 1'7,1 ? tm
}
r3’60 A3,4 s+d+p1;t,m rs’1 i tm
|
o .. !
r3,61 A:,)’4 : s+d+oj;t,m (a®0) rS,S ; tm
1 i;
3,62 Az 4 d;ky»py T5,50 } kiPy
T A s+ld't P T | tp
3,63 3,4 3¢ taPy 4,11 1
|
3,04 0 M3, s+3d;pp,m fa,13 | AT
CTaes - e dremikiopy 4,27 1P2
i §
1/3 1 } 3
1. 1f t+k
3,66 | 3,5 s-zditrkpm se LGk m
177 : )
T3,67 Azs d;t,py Ts,48 0 P1/t
|
1/2 . 2
3,68 | 3,5 SiPpam Ts,as | PI/M
rE Al/2 d+em;t T ; Pz/t
3,69 3,5 »Py 4,28 | P1
|
rs al/2 s+et;p, ,Mm r ? PZ/m
3,70 3,5 Py 4,29 | 1
9,€ Al/2 sta(j-e(ct+t)); k, +e m re i (k, tep )2/m
T3, 71 3,5 J 3K TEPY 4,30 | 172
|
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‘ ( ;
NAME f ISOMORPIISM { GENERATORS 1 NORMALIZER‘ INVARIANTS
L CLASS \ ;‘ \
. 172 1 ! NS
~2d: k
r3,72 A:,,’5 S 3d,t+kl,p2 | self pz(t+ 1)
o, B x .. T a
r3,73 . AS,S | s+ad+B8j;t,m r5,5 tm
[ | {x=-a 1if o0<|a|<l;
i : {
U |x=-1/a if 1<|q|
a X . 1 1-a_2a
T3,74 . Aszgs stod;tpy SR VO B 5
[ X= 51 if -1<0L<'§, a=z0; ; i
- |
X= a-1 if a<-1 or l<a,a==l
a 3 !
L B
> 7 X T I I La-1 o+l
3,75 | A3, | sradiky Py | Taz | LS 2
ofxe 1me .
) - [x= 7o if O<a,asl; |
{ volX= lta if a<0,o=-1 i
; : 1-a |
i . |
o | X ! i a-1 2
3,76 ; As,s - stadipy,m | T4s P
! = 152 i -1<acs,an0,1;
: |
‘ ! x= 2= if a<-l or 3<a
- - |
R - T2 2
3,77 1 P36 JipyoPy T P1*P;
| | ;
T e 1 .. ! 2.2
i r3,78j A3,6 ‘J‘Et:P1>P2 f r6,3 P1+p2
; ! ‘
' . -
| £ Co . 2,2
! r3’79 } A3,6 J+em,p1,p2 ' r6‘4 p1+p2
£,% L. . _ 2
r3,80 | AS,G é J+et+xm,p1,p2 (x=t1) X rs,2 PItP;
L | i
P i‘ A ; j+a(s+d); (az0) : T 2+ 2
3,81 . 3,6 il iP1+Py 5,22 PPy
—— T ’ i
o . o e P1-1ip,
ir i A I jtas;p,,p (a=0) T 2, 21171 "F2lie
| 3,82 | ,7 1*%2 6,6 | p1+p2 p.ip
! ! 12
‘ a7 ' L '
o i o . . : ! p,+ip.y.
T35 | A3y ; Jtadipy,p, (020) Y67 | 1p2epd [ L2\
. } Lpl P
T 58 | X . . . P1-1P5); (a-
| r3’84 A3,7 J+as+Bd,P1’P2 (2820 ,0#8,%|a BI) s 22 | p2+p2 1 i(a-B8)
! ; ‘ | |P1*P2)|p +ip
i ! 1 2
a,e | Ta] L ] : P, +ip.,y .
r3,85 A3,7 l J+ad+sm,p1,p2 (a=0) i r5,23 p2+p2 1 i 2lia
" ! : ! 1 %2(|p,-ip
i i 1 2
o] 'l 4 ‘
a,€ a Co . ‘ I P1-ip,y.
3’86 Ay g | jrastetip,p, (a=0) L Tsap p2+p§] 17%2)ia
! | I R | IO
: i
s ! ‘ 2 2,2
r3,87 A3,8 : ;¢,d,t ; r6,6 | (c+t) - (c-t)"-d
l : |
s i ‘
TABLE VII. Two-dimensional subalgebras.
NAME ISOMORPHISM GENERATORS NORMALIZER
CLASS
o
2,1 24 Pyom 8,6
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NAME ISOMORPHISM GENERATORS NORMALIZER
CLASS
T
2 -
-'2 2Al pl:Pz 1'7’1
r2,3 2A1 t,m r7’1
€ £,0
r2,4 2A1 k2+spl,m r7’7
r2,5 2A1 j,m r6,1
£ .
r2’6 2A1 j-e(ctt),m rg,S
T 2A t,p rd
2,7 1 1 6,14
r2,8 2A1 S, r5,3
r2,9 2A1 j,t r5,5
re 2A t
2,10 1 TEm Py Ts,27
r2,11 2A1 t+k1,m r5,33
2,12 2A) ky»pp T5,50
£ .
1‘2’13 2A1 jtem,t r4’4
5 2A jtet
2,14 1 Jret,m 4,5
s 2A +aj ,t
2,15 1 STaT, 4,6
r2’16 2Al j,ctt r4,7
a .
r2’17 2A1 ctt+oj,m (axe) r4,7
T2,18 2A i.d Ts,8
o .
r2,19 2A1 d+aj,m (a20) r4,8
re 2A j-e(ct+t)+k,+ m &
2,20 1 J-ele 17€Py» T4,17
s 2A i, t+
2,21 1 J.trem T4,22
T2,22 24 s+d,py T4,23
€ 2A j-e(c+t), ko + re
T2,23 1 J-¢€ » X1TEPp 4,30
Ty,24 A tik;.p, T4,52
rEo 2A j+um,t+em (x=%1) T
2,25 1 ’ B 3,7
£,% . -
r2,26 2A1 J—e(c+t)+nm,k1+ep2 (nx=%1) 1‘3,8
r2’27 2A1 s+d+p2,p1 1‘3,9
€ .
r2’28 2A1 stet,j r3,10
E s
1'2’29 2A1 staj,jtet r3,10
£,0 .
r2,30 2A1 jtem,c+t+am rg),11
E .
rz’31 2A1 j,ctt+em r3,1l
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NAME ISOMORPHISM GENERATORS NORMALIZER
CLASS

£, .

r2’32 ZA1 j+em,d+am (a=20) r3,12

r2’33 2A1 j,d+m r3’12
o N

r2’34 2A1 sta(ctt),] (a=0) r3,13
a,B . .

r2,35 2A1 s+aj,ctt+Bj r3,13
o -

r2,36 2A1 s+ad,j (a>0) r3’14
o 2A +aj,d T

2,37 1 stels 3,14

20 2A staj,j+8d (8>0) r
2,38 1 ) 3,14
o A +aj;m T

T2,39 2 stals 6,1

r2’40 A2 s+d;t r6,6

r2’41 A2 s+d;m r6’7
o A d+oj;t T

12,42 2 15 5,5

2,43 A stdp, it 4,2

r2,44 A2 s+d+p1;m r4,3
€,a . .

r2,45 A2 d+ajtem;t r4’4
€,a ; .

r2146 A2 stajtet;m 1‘4,S
a,B . .

r2,47 A2 d+ast+Bj;t (az0;a21 if B=0) r4,6

8 A s+aj+B(c+t);m (820) r
2,48 2 J ; 4,7
a,B . . . ; -

r2’49 A2 s+aj+Bd;m (B>0;821 if «a=0) r4,8
3,50 Ay 3Py T4,11
T2,51 Ay s-d;p, Ta,12
T2,52 A dipy T4,13
rE A +et;
2,53 2 Stetipy 3,34
2,54 Ay std+p) .k, 3,35
: A d+em;

T2,55 2 EMPy T3,36
€,0 .. €
r2,56 A2 s-d+aj;t+em r3,37
£, s s - €
r2,57 A2 s+a3(3+s(c+t)),k1 ep2 r3’38
€

1‘2’58 A2 s+<xd,pl (ax0,€e) r3,39

1.,
r2,59 A2 s—-:,;d,t+kl self
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TABLE VIII. One-dimensional subalgebras.

NAME GENERATORS NORMALIZER
1,1 n T10,1
) t 71
1,3 P T7,3
71,4 J T6,1
£ . £
rl,S j-e(c+t) r6’5
¢ t+em w1
1,6 6,12
rt k, te 8
1,7 2TEP; 6,18
ra s+aj T
1,8 J 5,3
rf i +em T
1,9 J 5,4
€,% . - €
rl,lO j-e(c+t)+um (x=%1) r5,19
1,11 s+d 5,22
£ jtet by
1,12 J 4,5
ra ct+t+aj (aze) T
1,13 & 4,7
r? d+aj (a20) T
1,14 J = 4,8
1,15 trky ¥4,52
£,% . -
r1,16 jret+um (n=%1) r3’7
4 . €
r1’17 J‘E(c+t)+kl+5p2 1-3,8
rl,lS s+d+p1 r3,9
€,0 X
r1,19 staj+et r3,10
£,0 .
r1,20 ctt+aj+em (az+l) r3,11
€,0 .
rl’21 d+ajtem (a20) r3,12
ra’B staj+B(c+t) {B20) ho
1,22 J 3,13
a,B . . -
r1,23 s+aj+8d (8>0),(B=#1 if a=0) r:,)’14
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The gradient formula for the O(5) O(3) chain of groups
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It is well known how to expand in spherical harmonics the gradient of a radial function in turn multiplied
by a spherical harmonic. This expansion involves the use of the Wigner-Eckart theorem for the familiar
0O(3)DO(2) chain of groups, and leads to Wigner coefficients in the formula together with reduced matrix
elements which are simple first order differential operators in the radial variable. In the present paper we
extend the above analysis to the application of the momentum operator , to functions of the collective
coordinates a,, m =2,1,0,~1,—2 associated with quadrupole vibrations. The spherical harmonics are
now replaced by the complete but nonorthonormal set of functions X1y characterized by the irreducible
representations A,L,M of the O(5)20(3)20(2) chain of groups as well as by an extra labelling index s,
that were derived in a previous publication. The application of the gradient to a product of a function
F(B), B°=3,a,a™, by X, requires an extension of the Wigner—Eckart theorem for the
nonorthonormal basis. Results similar to the ones mentioned in the previous paragraph are obtained,
though, of course, now we will have Wigner coefficients in the O(5)2)0(3)0(2) chain which have already
been derived and programmed. With the help of the gradient formula we discuss the effect of the
operators [ X mlL, L =0,2,4, [aX@]L, L=1,3 on basis of the O(5)) O(3) chain of groups and indicate

some of their applications.

1. INTRODUCTION

In recent publications'? a systematic analysis was
given of the group theory underlying the collective
model of the nucleus introduced originally by Bohr
and Mottelson. ? As is well known this model was
fundamental in the understanding of many features
of nuclear structure.

The chain of groups involved is U(5) 2 0(5) 20(3) as
the basic problem is a five-dimensional oscillator
related with the quadrupole vibrations of the nucleus,
whose states are characterized by a definite angular
momentum, These states were explicitly determined
in Ref, 2, and with the help of them the concept of
reduced 3j-symbol in the O(5)> O(3) chain of groups
was defined and then computed numerically for some
cases of interest. ?

As shown in Ref. 2, all matrix elements of poly-
nomial functions of the collective coordinates a,,,
m=2,1,0,-1,-2, with respect to the states mentioned
above, can be obtained with the help of the reduced
3j-symbol in the O(5) > O(3) chain. There remains,
though, the question of how to calculate matrix elements
of polynomials in the momentum 7™ conjugate to o,
i.e.,

[y ™™ =80y M= (= V)T ==i(= )" 3/ 20,
(1.1)

Of course, the existence of the reduced 3j-symbol just
mentioned suggests the use of the Wigner—Eckart
theorem as applied to the O(5)> O(3) chain of groups.
Some caution has to be used from the fact that our
basic states, though complete and characterized by
irreducible representations X of O(5), L of O(3), and
M of O(2), have still another label not associated with

¥Member of the Instituto Nacional de Energfa Nuclear and
El Colegio Nacional, México,
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a Hermitian operator and therefore are not orthonor-
mal, Thus for the expansions we require not only these
states but also those dual to them whose scalar product
with the original ones gives Kronecker deltas in all the
indices involved. This leads to the concept of Wigner
coefficient in the O(5)> O(3) chain rather than the
reduced 3j-symbol, where the latter, of course, has
more symmetry properties.

We shall show that with the help of the Wigner co-
efficients and their appropriately defined duals, the
derivation of the matrix elements of 7, as well as of
some simple functions of them, is straightforward.

To make the method more transport, we shall start
by implementing it in the O(3) > O(2) chain of groups in
which one gets the familiar gradient formula of Rose’s
book, 3

The explicit calculation of the matrix elements of the
operators [7Xw]E L=0,2,4, are relevant to the evalua-
tion of eigenstates and eigenvalues of the collective
Hamiltonians H(a,,, ™) proposed recently by Greiner
and his collaborators. ¢ Furthermore, these operators,
together with [@ X7k, L=1,3, will allow us to discuss
the effect of the generators of U(5) on states charac-
terized by the irreducible representation of the
O(5) © O(3) chain of groups, These are some of the
motivations for the present analysis,

2. THE GRADIENT FORMULA FOR THE
0(3) © 0(2) CHAIN

For the O(3)D> 0O(2) chain the states that are basis for
irreducible representations are the spherical harmonics
Y,.(8, ©), and the gradient formula refers to the deter-
mination of

pmf(‘r) Yl’m'(ey (p), (2. la)
Pm=—i(=1)"0/3X_,, (2. 1b)

(where m’ =1l’,,,.,-1', m=1,0,-1) as a combination
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of spherical harmonics multiplied by a first order dif-
ferential operator in 7 acting on f(r).?

To begin with, we note that the integral over three
spherical harmonics

{tm, 1w [Lrmn

T ol
Ef/ Y,lk"m"(ei (P) Ylm(er (P) Yl'm'(91 QD) sinf dé d(l)
0 0

21 +1)(21 172
= [:_4#_(5;5’ j:i-_;—-l)] (lO,l’OIl”O)(lm,l’m’Il”m")

(2.2)

carries already the same dependence on the indices
m,m’,m” as the Clebsch—Gordan coefficients
dm,U'm’1"m"”), because the other factors in (2.2) are
independent of them. It is important to stress, though,
that the coefficients (2. 2) vanish when [ +1’ +1” is odd
as in that case® (10,1'01170)=0. Thus we can replace
Am, Um’ | 17m”) by (2.2) only if L +1’+1” is even, We
note, though, that the momentum p, of (2.1b) has the
same properties as the position operator x,, i.e., both
of them are polar vectors and thus p, transforms under
the full group O(3), including inversions, as ¥,,(6, ¢).
Thus in the application of p,, to some function of » multi-
plied by Y,.,..(6, »), we can use the Wigner— Eckart
theorem where the usual Wigner coefficients are re-
placed by (2,2), i.e.,

pmf(y) Yl'm'(e (/))
=& 20 Y a8 so)ff Y umalDnf () Y 1] 5in6d0 d

=27 Yy, 8, Q" |p 1) F@) Hm, 1'm? [17m 7},

Ve

2.3)

where all the dependence on the indices m, m’, m” is
carried by the coefficient {1m,I’m’ [I”m”}. The reduced
matrix element (”llp lIl’) depends only on I’,1” and,
from the differential form (2. 1b) of the operator p,,, it
must be a function of 7, d/dr of first order in the
latter,

To determine this reduced matrix element, let us con-
sider the particular case when m=-1, m’ =0, i.e.,

P-if(’r) YI'I'(G; (p)

@1+ ) ! 1/2( 1)1'
{f( ) [ T -
i X [21;4_1)“} 1/2 <ﬂ) g
- anl! ¥
lf[2l +1]1/2[(21' 1)! 1]“2< A
r 4n(I" =11 v :
We note, though, from the explicit form of Y,; given

in (2. 4) and from the fact that x_,/7 = (47/3)'/2Y,_,(6, )
that we may write

(2.4)
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p-lf(r)Yl' 1 (9) (P)

i)

XA, =100 U =13 e (6, (p)]

= [@U+D)] /)Y ey, 10 1(8, @) (2.5)
Before comparing (2.5) with (2. 3) to determine the
reduced matrix elements, we note that I” is restricted,

by the laws of composition of representations of the
0O(3) group, to 1I'=11<1"<!"+1 and that, furthermore,
parity considerations mentioned above forbid " =1’,
Thus we have [” =1"+1, and for the case [”"=1"+1 we
immediately obtain

@ +1lplry= (%’r) e (;‘i-ﬁ—) .

For the case I” =1’ -~ 1 we require the explicit value of

{4,-1;0,0r-1,1 -1}

(2.6a)

- foxfoh Y3(0,9) Y13(6,9) Yy, 14(6, ¢) sinédodol*,

2.7
where we used the relation Yy, 4 =-Y§.

The last expression is very easy to obtain from the
explicit form of Y., appearing in (2. 4), and thus we
have

3 1’ 1/2
- « Jr ’ L. - —_— —_—
{1,-r,v|r-1,r-1}= [477 zz'+1] . (2.8)
From this result we see, when comparing the coef-
ficients of ¥, ;¢ in (2. 3) and (2. 5), that
, N [4m\ Y21 /d 1I'+1
@ -1lply= (—3-) ?(3—7+ -~ ) . (2. 6b)

We did this elementary analysis in such detail be-
cause we want to follow it step by step in the derivation
of the gradient formula for the O(5)> O(3) chain of
groups. As a first consideration in the implementation
of this program, we discuss in the next section the
basis for irreducible representations of the O(5)> O(3)
chain of groups which are the equivalent ones for this
problem to the spherical harmonics for O(3)> O(2).

The basis mentioned was derived explicitly in Ref. 2,
but besides establishing its properties and notation we
shall also discuss one dual to it which shall prove use-
ful in the derivation of the new gradient formula.

3. BASIS FOR IRREDUCIBLE REPRESENTATIONS
OF THE 0(5) D 0(3) CHAIN OF GROUPS

In Ref. 2 we obtained explicitly the polynomials
P,, r(a,) of the collective coordinates «,, m
=2,1,0,-1,~ 2 which are eigenstates of the Casimir
operators A%, L? of the O(5), O(3) groups with eigen-
values A(A +3), L(L +1), These polynomials have maxi-
mum projection in the angular momentum, i.e., M=L
and besides are also characterized by a missing label
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index p which is restricted to nonnegative integer values
in the rangel+?

A=L <3p<x=(L/2), if L even, (3.1a)
AeL <3y <hm (L—2ﬂ> , if L odd. (3.1b)

For a fixed A, L the relations (3.1) indicate that if
there are 1’s that satisfy them, they will take all possi-
ble integer values between a minimum one [y and a
maximum one 1, > to. Thus instead of the index p we
could use an index s defined by

s=p=po+l, (3.2a)
where
s=1,2,...,d(\, L), d(\,LY=Hy=py+1, (3.2b)

with d(2, L) being the number of irreducible represen-
tations L of O(3) contained in a given irreducible rep-
resentation x of O(5).

As indicated in Ref. 2, we can pass from the collec-
tive coordinates &, in the reference frame fixed in
space to those a,, fixed in the body through the
transformation

Up=2 D2l e s (3.3a)
where®
ay=a_,=(1/V2)Bsiny, a;=a,=0, a,=pcosy.
(3.3b)

In (3.3) 9, {=1,2, 3, are the Euler angles, 8,y the
remaining coordinates, and D,’m.(S,) the Wigner function
associated with the irreducible representations of O(3).
In these new coordinates the polynomial P,, ;(a,,) takes
the form

Py.r(a,) =620 ¢} “(7) DLEO), (3.4)

where again the functions ¢¥*Z(y) were explicitly given
in Ref. 2. Clearly states of arbitrary projection M of
the angular momentum could be obtained just by re-
placing in (3. 4) the lower index L in DE%(s,) by M.

As B* =3, a,a™is an invariant not only of O(3) but
also of O(5), it is clear that a complete, though not
orthonormal, basis of the O(5)> O(3)> 0O(2) chain of
groups, corresponding to the Y,,(8, ¢) in the O(3) 2 0(2)
chain, is given by

Xszuly, ) =724 22225 @1 () Digk(9,). (3.5)
The relation between s and u is given in (3, 2) and the
factor 7°/427*/2 with 7=3. 1416 is introduced to elimi-
nate irrelevant terms of the same form in the defini-
tion of Py, 1(a,,).

Besides the complete set of states (3.5) we shall re-
quire a dual one which is orthonormal to it in all the
indices. For this purpose let us first note that as
xﬁLM is an eigenstate of the Hermitian operators A?,
L2, L,, we get

IX);EM(V, 8¢) Xarzowe(y, 9,)dT
=By Bz pr O 280 2(2L + 1)1
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X[ T o) o)) sindy dy

= Byar Sy g Suue M 5o, L), (3.6a)
where in (3, 6a) the volume element d7 is
dT =sin3y dy sind, d%; d3, d9,, (3.6b)

and the ranges of integration of the angles are given by

0<9,, (3.6c)

where in formula (3.6) [and also (3.11), (3.13)] the 7 is
3.1416 and not the momentum operator.

y<m, 0<9;,9,;<2m,

The coefficients M (), L) have been calculated
numerically as they are in fact particular reduced 3j-
symbols in the O(5) ©20(3) chain. *

The d{», L)Xd(x, L) Hermitian matrix

MO\, L)= |Mgx, L) | (3.7

can be inverted, and we shall denote the components of
the latter as ML(», L).

We proceed to denote the set of states dual to the
X2u(¥,9;) of (3.5) by the same symbol but with a bar
above it and define them as

Xszu(¥, SI)’:? MAN, L) X3y, 90). (3.8)
Clearly we have then that
fiﬁtu(v, 3:) X::L'M'('y’ 90)dT =030 8550 811 Surnse (3.9)

With the help of the relation (3.9) we can immediately
find out the coefficients in the expansion of an arbitrary
function of the ¥, 9, in terms of the x3,4(¥,9%,). In par-
ticular we see that a product of two functions of the
type (3.5) can be expanded as
Xszu(¥s 9¢) Xyrz ¥, 9:)

=23 2 ASLM,NS'L'M! XSTLM Yy upn e (v, 8y),

Ao sYLM MY
(3.10)
where
PsLM,\’s’L'M' |\ 7s" LM 7}
= fﬁ:;"u" 2 90) XsLa (v, 9¢) Xoze ey, 9 dr
=23/4 QAN 2 (L g Lopt | LMY
X QL7 + 1)1/ Y- 1) 25 Mbn (7, L")

E'l
X(A,s+pg=1,L;), s +pp=1, L7507, 8" +pf =1,L"),
(3.11)

and in turn the last parenthesis in (3. 11) is the reduced
3j-symbol in the O(5) 2 Q(3) chain of groups defined by*

(MJ'L, MutL?, )\n“nL”)
' LL L” ept
= E ( ) kuL(,y X'A&'L Y
'/; KoK K® KK’ K" ¢K )¢l{ ( )
X k"L (v) sin3y dy,

where, using (3.2a), we have replaced the u’s by
S +IJ.0 -1,

(3.12)

The coefficient (3.11) will be called the Wigner co-
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efficient for the O{5)D> O(3) chain of groups, as its
definition parallels the one given by (2. 2) for the
0O(3) > O(2) chain,

In view of the fact that certain important cases of
{3.12) have already been programmed numerically, *
we see from (3.11) that the corresponding Wigner coef-
ficients are also available., These coefficients, together
with their duals defined by

IXSLM,x's'L'M’ | x#s"L"M"}

= X ten (7, 90) Xozw (v, 00) Kooy, 94) T
:TT23/4 2(6-)-7\'-1") /2 <L M, LM’ |L”M”)
X{2L" + 1)—1/2(_ 1)L0L’¢L"-E M;;()\, L)M;¥;'(A', Lr)
s5*

XN, 8 +wg=1, L\, 87 +up=1, L' A7, s” +pn=1,L")
(3.13)

will be required in the derivation of the gradient formu-
la for the O(5) > O(3) chain of groups and in the composi-
tion of products of states corresponding to given irre-
ducible representations of the same chain,

4. THE GRADIENT FORMULA

We are now interested in developing
7, F(B) XQI'L'M' (v, 9:),

where 7, is the operator {1.1), in terms of the x3., of
(3.5) with coefficients given by first order differential
operators in 8 acting on F(B). To achieve this objective,
we shall make use of the Wigner—Eckart theorem for
states characterized by irreducible representations of
the O(5)> O(3) chain of groups, a theorem whose
validity for the states in question we discuss in the
Appendix.

(4.1)

We first prove that @, 7, transform exactly in the
same way under arbitrary transformations of O(5).
Assuming a linear transformation

al. =2, R%a,, (4.2)
m
subject to the condition that
2ia™ gl =27 a",, (4.3)
we immediately obtain that
m____E R:'a’m" (4-4)
p
and thus we have
m D, da™
Bz San = 3am (4.5)

where covariant and contravariant components are re-
lated by

o™= (-1)"c. (4.6)
As
1 1
I —— —_— = m‘ .
Tm' =73 aa _z§ a’"’ a'"_§R"‘ﬂ"” (4.7
we conclude that 7, transforms exactly as
a,,,:ﬁx}z,,,(y,s,), M=2)l’0,_1v_2’ (408)
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where the last relation follows from the definitions
(3.5), (3.1).

In analogy to the gradient formulas (2, 3) for the
0(3) 2> 0(2) chain, we conclude from (3.8), (3.9), (3.10),
that we may now write

T F(BY XaoL (¥, 94)
=2 2 Xswrw el ¥y 94) fk_s)ﬁlz,""ﬂw"[”m}“(ﬁ) Xz dT

A grp g

=20 20 xlpugly, 9L |7 (X F(8)]

o sumge
X{112m; A's'L'M* [X7s LMY,
(4.9)

where the reduced matrix element A7 |7 [[X’) is a first
order differential operator in 3 that depends on the in-
dices X, A" of the irreducible representations of O(5)
but on none of the others.

As in section 2 for the O(3)> O(2) chain, we shall
determine the reduced matrix elements through the
analysis of a particular case. We shall consider in a
given representation A’ of O(5) the state with highest
possible L’ and M’=L’. From the inequalities (3.1)
we conclude that this value is L’=2X’ and for it ' =0
so that from (3.2) s’=1, From the discussion in Ref. 2
this state has the form

e a,\ ¥
X1, 220 (5 9¢) = <?z> ’ (4.10)
and thus if we apply to it 7,, with m =-2 we get
e\ __,; 2 [(E®
W-z[F(B)(B) J— { 3a, [(“ET’" ay
-1 A oy .O.l_-Z (9_2) ¥
' [(B s’ ) B \B
NF (o *"‘}
+ B <3> . (4.11)

We note though from (4. 8), (4.10) and the expansion
(3.10) that the expression (4,11) can be written as

‘”-zF(B) X?:zv, 2»(')’; 34)

:4{[(52 S LCIRR2

A
x{1,1,2,=2;27,1,2)7, 2\ |>ws"L”M"}]

NEF .
* B(B) Xz, 22 (¥, ’91)} .

[XZ:L" se(¥59;)

(4.12)

Before comparing (4. 12) with (4. 9) to determine the
reduced matrix element, we note that in the Wigner
coefficient appearing in them the irreducible represen-
tations A’ and 1 of O(5) are combined to give »”. The
selection rules’ indicate then that A” =X’ +1 if, as re-
quired in the present case, the resulting representation
is symmetric. For A” =X’ +4+1 we immediately obtain
from comparing (4.9), where we take s’=1, L’'=M"’

=2)\’, with (4.12), that
1{d N
’ N -
O +1||7r|]>\>~i (dB B) . (4.13a)
For M =2x’—-1 we require the explicit value of
Castanos, Frank, and Moshinsky 1784



Q0v)={1,1,2,-2;x, 1,20, 20 [a = 1,1, 20 = 2,207 - 2}
=M\ = 1,21 = 2) fx}'.'zli'"-z.zx'-z Xioz,w2Xto2nr, 00 AT
=M -1,20 =2) [T +3)/2]

x[ [(a})*ayai =t dal¥, (4.14)
where in the last parenthesis of (4,14) we extended the
integration to the full volume element of the @, varia-
bles by multiplying and dividing the Wigner coefficient
by

J 8 exp(~ ) B'dB=T (' +3)/2. (4.15)
The last integral in (4.14) is then trivial to evaluate and
a similar trick can be used to calculate Mj;(\' -1,

2)’ = 2) to obtain finally

QMV)=x (2 +3)1, (4.16)

Comparing then the coefficients of x}Jh.y, 0z in (4.9),
(4.12), we then conclude that

1/d XN+3
w=1finfry=3 (d_B + ——§~—>
The gradient formula for the O(5)> O(3) chain of

groups is then given by (4.9) in which A7 =x"£1 and the
reduced matrix elements have the operator form (4.13).
In the next section we shall proceed to indicate its use-
fulness in the analysis of matrix elements of velocity
dependent collective Hamiltonians,

(4.13b)

5. MATRIX ELEMENTS OF VELOCITY DEPENDENT
COLLECTIVE HAMILTONIANS

In the extensive work of Greiner and his collabora-
tors® they used Hamiltonians of the type H(a,,, 7,
which are, of course, invariant under O(3). The mo-
menta 7, appear in them at most to the second order
so that using the commutation rules (1.1) we have either
terms containing only the «,’s alone, whose matrix
elements we already discussed in Ref. 2, or terms of
the form
E B).msL BZmoAE (" I)M X:, Ly -M(‘y’ '35 ){7X Tr]{(’ 3 (5' 1)
AmsL M
where B are arbitrary coefficients. Linear terms in 7
cannot remain as the corresponding Hamiltonian would
not be invariant under time reflection.

By introducing intermediate states characterized by
A’s’L’M’ between the x functions and the momentum de-
pendent part appearing in (5.1) we can reduce the eval-
uation of the matrix elements to Wigner coefficients
of the type (3.11) multiplied by the matrix elements
of [7X 7]}, which we proceed to analyze here.

From the discussion of the previous section we can
write

[77 X ‘”]f; F(B) X:IL'M’(')/, 9)
= E Z; Z} xl".s"L" M"('y’ 8‘)<2m, 2m’ ILM)

Alls”Lll M“ AmslnLnlu"l m, ml
1% [{1’ 1,2, m; \"s™ Lmpm IK"S”L”M”}()\" “ﬂ- ”xm>
x{17 1,2, m’; s LM’ fK”’S”’L”’M”’}

x|\ ||y F(8)), (5.2)
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where the reduced matrix element operators (\” |7 lA%)
are given by (4.13) and the Wigner coefficients in the
0(5)2> O(3) chain of groups have the form (3.11).

Clearly L in (5.2) is restricted to L =0,2,4. The
case L =0 is trivial as [vx«]} is proportional to the
Laplacian which can be expressed in terms of a second
order differential operator in 8 and the Casimir opera-
tor A% of O(5) for which the y%;, are eigenstates with
eigenvalue A(X +3). Thus we need to consider only the
case [7X7]5 where L =2,4, which, from the transfor-
mation properties (4. 7) of the 7,, and (4.2) of the «,,
transform in exactly the same way under O(5) as
laxalt, L=2,4.

We note, though, from the definition (3.5) of xﬁL”
and the explicit form of the polynomials P,, ;(«,) given
in Ref. 2, that

Viwlr, Q) =cBaxaly, L=24, (5. 3a)
where

c, =3V, c¢y=1. (5.3b)
Thus we conclude that

ciloxnly, L=2,4, (5.4)

transforms in the same way under O(5) as xf,,,, so that
we expect the appearance in (5.2) of the Wigner
coefficients

{1LM;xs LM |arsr LM}

= f i::z"fvf" CLB'z[Ct Xa ]ﬁ X::L'M’dT

=cy 2 {2m,2m’ |LM)

m, m’

x 5

Nimgrep w ppem

[{1 12m; s Lmpm ]K"S "L”M”}

X{112m';>\'S'L’M' |>\”’S”,L”’M’”}], (5' 5)
where we made use of the fact that from (4. 8)
Baxalk

= 2 @m, 2m’ |LM)xlyn(¥, 90) Xlaml¥, 9),

mym’

(5.6)

and we introduced an intermediate state yu wym be-
tween the x’s appearing in (5.5), (5.6).

To see that in fact the Wigner coefficients (5, 5) are
present in (5.2) we start by noting that in these equa-
tions A =Xx’+1 and A" =A" 1 so that A" =X’ +2,

A7, A" =2, In the case M =X’ +2 we can have only one
intermediate state A =2’ +1 both in (5. 2) and (5.5) and
thus there is no summation over the intermediate A*
though there may still remain one over s”L”M"”, Thus
clearly the Wigner coefficient (5.5) appears in (5. 2)
for the case A” =X’ +2 multiplied by the reduced matrix
operator

O +2 | [mxa]far)
s +2llm v+ 000 w17

—- (-2 (&-3)
~ \dB 8 a -~ 8)

A similar consideration holds for A” =X’ = 2 where
there is only a single A” =X’ — 1 and thus the Wigner
coefficient (5.5) appears in (5.2) multiplied by the re-

(5. 7a)
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duced matrix operator

=2 |[[rxally= v =27 = 100 = 1|7 a0y

d A +2 d A +3
—_<d6+ E )(ﬁ* 3 )
(5. To)

There remains the case A" =X’ where both A =X’ +1
and A =X’ =1 are possible. We note though that the
operator

M axalay= ol + 0o +1 7|2

_ (1 d g d _ >u(>v+3))
“T\eTag T agT E

= lw =10 =17 fx) (5.17c)

has the same value when it is defined with any of the two
intermediate A” =2’ +1. Thus we clearly see that for

A" =X’ the corresponding Wigner coefficient (5. 5) ap-
pears multiplied by the reduced matrix element opera-
‘tor (5. 7c¢). Thus we can finally write

crlmX T F(B) xhoronly, 9)

=20 2 Xemwos (v, )L [[mx ][] A7) F(B)]

YA SA

X{21LM; \'s’'L'M’ |\"s"L*M"} . (5.8)

We have obtained a formula for [1r><7r] acting on the
basis states of the O(5) > O(3) chain of groups similar
to the one for =, on the same basis. We note that the
‘Wigner coefficients appearing in (5. 8) are given by (5.5)
in terms of

{112m; x's7 LM |a7s” LM}, (5.9)

which are also required in the gradient formula (4.9).
From (3.11) these coefficients can be immediately ob-
tained once we have the reduced 3j-symbol

(IOZ;AI“ILl;x”“”LII), (5.10)

where s and u are related by (3.2). This 3j-symbol
has already been programmed by several researchers*
interested in this field. Thus the matrix elements of
Hamiltonians of the type H(a,, ™), where 7" is not
higher than second order, can be systematically cal-
culated. Furthermore, we plan to program directly the
reduced 3j-symbol

(20L; 2"’ L7; x"u” L"), (5.11)

In fact the analysis of this paper can be extended to
problems involving several quadrupole collective co-
ordinates as happens, for example, when we consider
the interaction between two even—even nuclei, each one
with its own collective coordinates a'!’, a!?,
m=2,1,0,~-1,- 2, We require then the construction,
from products of states in these coordinates charac-
terized by given irreducible representations of the
0(5) 2 0(3) chain of groups, of composite states charac-
terized in the same fashion. We show in the Appendix
that this objective can be achieved with the help of the
dual of the Wigner coefficient defined by (3.13). Once
these composite states are available, the determina-
tion of matrix elements of some potential interaction
such as V(al’, @!?) involve recoupling procedures that
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lead to concepts such as Racah coefficients for the
0O(5) > O(3) chain of groups.

The observations of the previous paragraph are
relevant to some considerations, being developed by
the present authors, for the analysis of fission and
fussion of heavy nuclei whose internal structure is
assumed describable in terms of collective quadrupole
excitations.

In the present section we discussed the operator
[7r><7r] because of its relevance for eigenstates and
eigenvalues of velocity dependent Hamilfonians
H(a,, ™), We shall show in the next section that these
operators, together with others of similar type, are
also relevant to the application of the generators of
U(5) to states characterized by irreducible representa-
tions of the O(5) > 0(3) chain of groups.

6. APPLICATION OF THE GENERATORS OF U(5)
TO THE EIGENSTATES IN THE 0(5) D 0{(3) CHAIN

The generators of U(5) are given in terms of the crea-
tion and annihilation operators

Na=(1/V2)Na, —ir,), &n=(1/V2)a, +it,) (6.1)
by the expression!'?
(nx )= 20 @m,2m’ |[LM) Nk, L=0,1,2,3,4. (6.2)

m,m

Clearly we can also write them in terms «,, 7,, as

(nx el =i(laxalf+[mxal)l + (= 1)*]

+3ilaxalE[1 - (- 1)*]= (V5/2) 6. (6.3)
The application of the operators [a Xalk, [7x7]§,
L=0,2,4, to the states
F(B) Xz, 9) (6.4)

was already discussed in the previous section. Thus,
there remains only the analysis of [exX7]k, L=1,3,

which is associated with the generators!'? of the O(5)
subgroup of U(5).
For L =1 we have that!
ilax7]l=(10)"?L,, p=1,0,-1, (6.5)

with L, being the components of angular momentum, so
that the application of the operator (6.5) to the states
(6. 4) is trivial. The situation is more interesting for
the case L =3 where from (4.8), (4.9) we have

I3 Tnrgw 1[0 X1} F(B) XX poye AT

=z~2[2 >

»Ne ’ LRI
A mym! SMLUY

@m, 2m’ l3M)

X{112m; X IRAV l)\rls ”LIIMII}
X{llzn,ll; Ns/L'M? ‘7L”'S"'L”’M’”}][ﬁ()\’” “ P H>\'>F(B)]
(6.6)

with (\” [ir lIA’) given by (4.13). We note though that as
[ax7]3 is a generator of O(5), it cannot change the index
A’ of the original state and thus the formula (6. 6) is of
interest to us only when A” =A’, Furthermore, from
(4.13) the formula (6.6) contains a term Bd/dB whose
coefficient must be zero as it is obvious that the gen-
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erators of O(5) are independent of the radial coordinate
B. Thus the terms in the first square bracket of the right
hand side of (6.6) must be equal and of opposite sign
when A7 =X’ +1 and A =X’ -~ 1., This allows us to write,
after making use of the expansion (3.11), the following
expression for the matrix element of the generators of
0O(5) in the O(5)> O(3) basis:

f iwL"M"[i[a X‘”]?ﬂ X::L'M']dT
— 23/2 \/77_(2)\; + 3)(L'M', 3M ‘LIIM")(ZLII + 1)-1 /2 g8-2n*
X 25 (= 1)F" L w(32L"L";2L")

S

20 Mt (N =1, L") XMhza (W, L")

EMI K

x (102;M, s’ +pf=1,L; 0 =1,57 + 5 —=1,L")

X (102,07 = 1,87 + g ~1; N, §7+pf=1,L"),
(6.7)

where W is a Racah coefficient® and the reduced 3j-
symbols at the end of the formula have already been
programmed, 4

We see then that we can apply the generators (6. 2) of
U(5) to any state (6.4), which will prove useful in many
applications,
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APPENDIX: THE WIGNER-ECKART THEOREM IN
THE NONORTHONORMAL BASIS OF THE 0(5) D
0O(3) CHAIN OF GROUPS

The derivation of the gradient formula and its exten-
sions in Secs, 4 and 5 was carried out in analogy to the
discussion in Sec. 2 for the familiar O(3) > O(2) chain.
In the latter one made use of the Wigner—Eckart theo-
rem as discussed, for example, in Rose’s? or Wigner’s®
books.,

To be able to prove a similar theorem for states and
tensors characterized by irreducible representations of
the O(5) > O(3) chain of groups, we need to define a com-
plete set of basis states for all irreducible representa-
tions” A=(\;,) of the O(5) group and not only for the
symmetric ones A= (\0) that were required in the
present paper. Furthermore, on these basis states, in
general not orthonormal, and their duals, we define the
irreducible representations themselves. With the help
of the latter we define the Clebsch—~Gordan coefficients
and their duals that combine two bases of irreducible
representations of independent systems to give new
ones that are also irreducible bases with the established
row characterization. From them the general proper-
ties of representations, valid for all compact groups,
allow the immediate derivation of the Wigner— Eckart
theorem.,
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The considerations to be developed below will be en-
tirely abstract, but when restricted to the symmetric
representations7 the basis and the Clebsch—Gordan
coefficients mentioned above become the states {3.5)
and (except for a factor depending only on the irreduci-
ble representations A, A’, X”) the Wigner coefficients
(3.11) and their duals (3.13). Thus the Wigner—Eckart
theorem will be proved in the form required in Secs.

4 and 5.

Let us start with the definition of the basis for irre-
ducible representations in the O(5)> O(3) 2 O(2) chain
though our notation will be kept general enough so that
the results will be valid for any chain of compact
groups.

For O(5) the most general representation’ is charac-
terized by a partition A=(a;, %;), where A >2, >0 and
they are integers. The row of the irreducible represen-
tation is characterized by the L, M of O(3), O(2) and
also by two missing labels® ¢, s which reduce only to
the s of (3.2) if the representation is symmetric, i.e.,
A=(10). We shall use the following compact notation:

p=sLM, o=tp, A=(,1,), (A1)

and x will be the set of parameters on which the basis
depends. If we consider just the symmetric representa-
tions A ={x0), then

X:(')’, 31,82,'83) (AZ)

or equivalently «,, as Bzzﬁmama’" is an invariant of
O(5). For the general representation A =(\,) we will

need to associate x with two independent variables
)y ()
o, oy,

We shall denote our general basis states for irreduci-
ble representations of O(5) as

(A3)

and they will clearly be nonorthonormal as ¢, s are not
eigenvalues of Hermitian operators.

Xo(x)

We can define a dual basis to the states (A3) by ¥4
with the property

SXB () & () do = 5 B (A4)

The orthogonal transformation (4, 2) of the O(5) group
can then be symbolized by

(A5)

and following Wigner® we define the operator Py asso-
ciated with the transformation R and acting on x2 as

Pgxdae) =x2Rx), (A6)

In view of the fact that the states x*(x), for a given
A and all compatible 0’s, form a complete basis for an
irreducible representation of O(5), we can expand

Pg Xé\(x) = 2 XEA(-X) A-U{\U(R)7

x"=Rx,

(ATa)

where A4,(R) will then be a representation of the O(5)
group elements on the basis x2. We use the notation A
rather than the familiar D as our basis is not orthonor-
mal and thus the representation is not unitary.

In a similar fashion we have for the dual basis
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PrXo () = 2 X3 () B3,(R), (ATb)
and the two representations are related by
AR(R) = [X&* (Prx?) dx
= f PR(PR-&Q)]*(PRXQ)dX
=[x (Pr-133) dx]* = BAFR™). (A8)

We now proceed to define the Clebsch—Gordan co-
efficients (Ao, A’c’| A”0”) for the O(5) group in an ab-
stract fashion. Take the product of two sets of states
X&(x), x&'(x,) associated with independent variables
xy, %y and combine them with coefficients such that the
resulting function of xy, %, is a basis for an irreducible
representation A” of O(5) with row o”, i.e.,

XA (g, xy) = aZ, (Aa, Ao’ [A7amyyAx,) X (%5), (A9)
y O

where

PrXAMM (xy, xy) = Z) XA (w0, xp) DB L (R). (a10)

We also define the dual X52™"(x,, x,) of the function (A9)

by the property

S AR My, 50,) XEMA (x4, %) dxy dity = 8 prpow Bgm gom
(A11)

and the dual Clebsch—Gordan coefficient as

2o (AT, AT IA”’O'”'>XU (x) X f\, {xy) .

6,5

Multiplying both sides of (A9) and (A12) and integrating
over ¥y, x,, we obtain from (A4) and (A11) that

AAIAIII
X5

A (xy, g ) = (A12)

27 Ao, A0 TAGPYAG, A707 [A7G”) = B pmpus Ogugue . (A13)
A (o}

a0

The Clebsch—Gordan coefficients could be written in
matrix element form with the help of the definitions

(Ao, Ao’ [A7amy= (Ao | I | gat), (Alda)

(Ao, Aot | Arary= (oo’ |MAN | Arary (Al4b)
so that (A13) in matrix notation takes the form

MAYMAY =1, (A15)

where I is the unit matrix of elements §pnpm Ogu . We
note that the number of values that o, ¢’ can take, which
is d{(A)d(A’) where d(A) is the dimension of the repre-
sentation, is the same as that of the values A”¢”, taking
into account all resulting representations from the com-
bination of A and A’ and all values of their rows. Thus
the matrices in (A14) are square ones, and, as a left
inverse is then also a right inverse, we get

MM MM =1 (A16)
and thus
Z} <AO’, Ao’ IAIIUII><A6, Ag! !A”U”) =by5 60'6‘ . (A17)
poe
From (A17) we obtain immediately that
Xe0) X () = 2 (Ao, Ao’ TAT0y XAV A" (xy, x,).  (A18)
Awg

We now proceed to derive the Wigner—Eckart theorem
when we deal with nonorthonormal bases. Let us con-
sider an irreducible tensor T2 defined by the transfor-
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mation properties

PRT 3Pt =21 T505R), (A19)
[

and consider the evaluation of the integral
S BT xSy dx= (aron | T4 | Arer). (A20)
We first look at the auxiliary expression

SB[ TA< N A ax, (A21a)
where

[TAXMAY = 55 (Ao, Ara? [Amom) TEYA . (A21b)

ay 0’

From (A19), (A7), (A8) we then have that integral (A21)
is equal to
S (PrxE* {PRTH xx ™18 }dx

= 2 ANG (R b (R) [XEH[TAxy N4 dx. (A22)

G

Multiplying then both sides by the volume element dR
of the group parameters and integrating over it, we
obtain

JRATHT A M) dxc

= Opndonn [AAN]T [ 23X [TAXXV" ax,  (A23)
where we made use of the relation®
S Ak (R ALY L(R)dR

= [d(A7) ] B gmpwBgugnzages | AR (A24)

which is a consequence of Schur’s lemma and indepen-
dent of whether the representation is unitary or not.

Obviously the last integral in (A23) is a function of
A, A’, A7 only which we could designate by

AAN]T [ 2 X TN dr= A T ), (A25)
so that, using the orthonormality property (A17) of the
Clebsch—Gordan coefficients and their duals, we obtain

SR (T o) dx

= (Ao, Ao’ TA7aTy A" | T4 | A7), (A26)

This last result is the derivation of the Wigner—~Eckart
theorem by essentially the standard method in which

we were only careful to note that our basis is not ortho-
normal and thus we have to use also the duals of all the
concepts involved such as bases, representations, and

Clebsch—Gordan coefficients.

We now particularize all the above results to sym-
metric representations of the O(5) group, i.e., A =(10)
50 we can replace A by X, 0 by the p of {(Al) and x is
given by the angles in (A2). We have then
[Ty dx =, xpt Impmyar | T [y,
but we still need to determine the Clebsch—Gordan co-
efficient in (A27). We note, though, that from (A18)

Xp(xl)Xp (xz)__ E <>\p )\r ’ !A”O")X )uN' x“ xz) (A28)

(A2T)

and that this relatlon holds no matter what the x,, x,.
In particular, it is validif x;=x4=x, in which
case X252 (v, x) vanishes unless” A” ={1"0), i.e., we

have only the symmetric representations. From the
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transformation properties (A10) of this last function

we conclude that
XA (x, %)

AT z " (N " —pn
_{G(xn )X (x) if A"=(\",0), 07 =p”, (A29)

- 0 otherwise,
where G(AX’)A") is so far an undetermined function of

the indicated variables. Substituting this result in (A28),

we obtain from the dual property (A4) that
(TE)\IPI I)\”pﬁ:G"(AX’K"){)\p, Xp! l)\npn}’ (A30)

where the last coefficient is given by (3. 11) if we take
into account the definition of p in (Al).

Thus (A27), (A30) give the Wigner—Eckart theorem
in precisely the form we need it in Secs. 4 and 5.
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The groups of Poincare and Galilei in arbitrary
dimensional spaces

E. Elizalde® and J. Gomis

Department de Fisica Teérica, Universitat de Barcelona, Diagonal 647, Barcelona-14. Spain
(Received 19 September 1977)

In arbitrary dimensional spaces the Lie algebra of the Poincaré group is seen to be a subalgebra of the
complex Galilei algebra, while the Galilei algebra is a subalgebra of Poincaré algebra. The usual
contraction of the Poincaré to the Galilei group is seen to be equivalent to a certain coordinate

transformation.

I. INTRODUCTION

It is well known that the Galilei group in 2+ 1 dimen-
sions is a subgroup of that of Poincaré, A beautiful way to see
this is by means of a change of coordinates' which is usually
called the light-cone transformation. This fact is physically
understood as the result of an infinite boost of a system in
some direction of the space, which leads to the loss of the
spatial dimension in this direction—due to the Lorentz con-
traction—and leaves the remaining system with a Galilean
structure. This method has had several applications, for in-
stance, to the study of the internal structure of hadrons at
very high energies? and to the connection of relativistic and
Galilean field equations for arbitrary spin particle.’ More-
over, with a modification of the light-cone transformation
involving a continuous parameter* it has been possible to go
from the (2+ 1)-dimensional Galilei group to the Poincaré
one in the same dimension, in a procedure inverse to the
ordinary contraction of the Poincaré to the Galilei group
when ¢— 0.

On the other hand, it has recently been shown that the
ordinary Lie algebra of the Poincaré group is a subalgebra® of
the complex Lie algebra of the Galilei group in 4+ 1 dimen-
sions. Also this result has been obtained through an ade-
quate change of coordinates. Nevertheless its physical inter-
pretation is not so clear. One possible application of this
connection is the derivation of relativistic equations starting
with Galilean ones, in just the reciprocal way of the former
case.’

Summing up, the complex Galilei algebra in 4+ 1 di-
mensions contains the ordinary Poincaré algebra, which in
turn contains a (24 1)-dimensional Galilei algebra, and
these relations have their parallel counterpart at the level of
the corresponding wave equations. The generalization of
this situation to an arbitrary number n of space dimensions is
one of the objects of the present paper. In this way we shall
see that for an abstract physical theory the election of one or
another invariance group (i.e., Poincaré or Galilei) is not so
fundamental as one would think, because it is possible to
obtain a relativistic theory in (# —1) 41 dimensions from a
Galilean one in # -+ 1 dimensions, and vice-versa.

Another purpose of this work is to investigate which is
in the present case the modification of the coordinate trans-
formation® which enables us to obtain the ordinary Galilei

sAddress after 1 October 1977: IL. Institut fiir Theoretische Physik der
Universitit Hamburg.
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group from the Poincaré one in the same dimension, as well
as the relation of this modificated coordinate transformation
with the usual contraction of the Poincaré to the Galilei
group. In other words, we want to study the corresponding
procedure to that of the quasi-light-cone frame* in the pres-
ent case.

The organization of the paper is as follows: In Sec. 2, we
generalize the coordinate transformation of Ref. 5 and see
how the Poincaré algebra in » space/1 time dimensions is a
subalgebra of the complex Galilei algebrain (n+1) space/1
time coordinates. In Sec. 3 we generalize the light-cone
frame transformation to an arbitrary number of dimensions
of the space. In Sec. 4 we develop a parametrization of the
original coordinate transformation which enables us to pass
from the Poincaré to the Galilei group in the same number of
dimensions. We study its relation with the ordinary contrac-
tion ¢c— oo . Section 5 is devoted to conclusions.

2.P,,,AS ASUBGROUPOF G, .,
The Lie algebra of the extended Galilei groupin (n+1)
space/1 time dimensions is given by
(Lol =00, Lo+ 8Ly~ 8, Lo—8:L,),
(L,.G,]=—i5,G,—8,G),
[L,»P,]=—i(5,P,~—8,P),
[G,G]=[P,P]=[L,,H]=[P,H]=0,
[G.H]=iP, ,
[G.P]=id,
(rs,uv=12,n+1) ,
[Lpp]=[P.p]=[Gp]=[H,p]=0,

(2.1)

where L, are the generators of rotations, G, the generators of
Galilean boosts, P, those of the space translations, H the
generator of time translations, and p is the neutral element
of the algebra, which is associated with the mass.

The generalization of the coordinate transformation in-
troduced in Ref. 5 to this case is the following. If
x%=(x%x",-,x"*+") are the old and x * =(x°,X",---x "+ ') the
new coordinates of an arbitrary point in the space-time—x°
being the time coordinate—they are related by

R=ixnt,
iizxi (l= 1,2...”1)’

Xt 1 =x%(y arbitrary).

(2.2)
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With this transformation the real Lie algebra (2.1) becomes where K;= M, (i=1,2,---,n) are the generators of boosts, M ;

a complex algebra of Galilei group. Let us consider the fol- (#j=1,2,---,n) those of the rotations, P, those of the space
lowing subset of the transformed generators: translations, and H= P, the generator of the time transla-
mijE:_—Lij= ~L, tions. The metric tensor is
K=L%=—iL,,,, (2.3) — +1 ]
d;=P,=P, (ij+12,...41),
h=P,=—iP, g=

The reason for the selection of these generators has already
been discussed in Ref. 6. The commutation relations for
these generators are the following:

[mypmg) = —i(8my+ 8;m— 8ymy—8;m ),

—1
— - .

The generalization of the ordinary light-cone frame

[mij’:d =i§§ij:j _? l:;’ (2.4) transformation to the present case is
[mi" 1]=l i Viks)s .
(kok )= —imy P=Git %)/ V2,
’ J U’ -a__a = sen —
[did;] = [myh] =[d,h] =0, X=xt (@=12-n—1) (32)
[koh)=id, [k.d,]=isph, Fn=(%—%,)/V2,

. . . . , . b 1_gn+1
which constitute the Lie algebra of the Poincaré group in » xrri=xr+l,

space/1 time dimensions. The metric tensor is transformed into the following:
pum—
3. LIGHT-CONE TRANSFORMATION IN ANY 0 1)

NUMBER OF DIMENSIONS —1

The commutation relations of the (n+ 1)-dimensional

Poincaré group which we have just obtained can be written 8=
in the compact form 1
[M;w’Mpo-] =i(gy.o-Mvp+gvap.o- 1 0 R
"_gp,vao- _gvchp,p)r v —
[PuM o) =i(8pPo—8uoPo)s (3.1)  while the new M,,, and P, are given by
[Pp‘ypv]:o (P"v’pyo'=0y1v--yn)1 4 }‘)I_L:((I_’O'*"I_)n)/\/-y Pls---,Pn_], (FO_IT")/\/E)’
0 ~KAM )NV —EKeAM )N K,
Ki+M,,)/V2 0 M, w (Ki=M)/V2
= [ &+M,)/V2 M, 0 v (Ka—My)/V2
pv= . . . . (3.3)
~K, (~KA+M)/NV2 (KA M)/NV2 0
Let us consider now the following subset of the new Iwhich constitute the Lie algebra of the Galilei group in
generators: (n—1) space/1 time dimensions.
WM B=RAPIVD 4. THE CONTRACTION ¢ AS A
_ = = . C— 0
8=K.~M, V2 1=(F-F)/N2, (34  COORDINATE TRANSFORMATION
d,=P, (@.b=1.2,-n). In this section we consider the case n =4 for simplicity,
) ) ] ] but all the results are immediately generalizable to arbitrary
They satisfy the following commutation relations: n. Let us start with the commutation relations (2.1) in the
Uaprleal =88l oe+ 05 dsg— 8, d oy — 84l 0)s particular case n =4. Consider now the following coordinate
8] = —i(5,8,—5,2,), transformation:
Uapde] = —i(8,idy—8,d,), (3.5) X=ox'+Bx,
[80i85] = (4] = [Luph] = [d ] =0, F=x (=129, @D
Xt =yx"48x".

[ga’h] =ida’ [ga’db] =i80bn’

[lab’n]=[da’n]=[ga!n]=[h917] =0 _ _
(ayb,c,d: 1:21""”— 1), li=li5_%e ijijk’ di =di

The commutation relations for the generators
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= _ 5 g y
° ad—By ° ad—pBy
k=M"= —(ag;+BA\,)

(jk=12,3) (A\=L,),

d4’

are given by
[li’lj] =l’€ijk1k! [1i9kj] zieijkkk’
[d)=ieud,,  [kokj) =ibieud
[di’dj] =[l,h)= [d,h]=0,
. o By
kuh =—z( x°_ )d.,
[*oH] ad—By ad—By/ "
[kod;] = —i(ap+ Bh+B3d.)S;
Depending on the values of the constants a, 8, v, 5, these

relations either constitute the algebra of the Poincaré group
or the algebra of the Galilei group. In fact, for

a=0, B=+i 6=0.

The relations (4.2) turn out to be the (3.1) in the case n =3,
while for

(4.2)

v arbitrary, (4.3)

a=1, B=0, < and?& arbitrary. (4.4)

Equations (4.2) are the same as (2.1) in the case n =2 (with
g=—kK,).
The coordinate transformation can be parametrized in

order to include these two particular cases for different val-
ues of the parameter. In fact, the following transformation:

coshie O sinhje
x=T(ey)x, T(ey)=| O I 0 (4.5)
0% 0 0

reduces to (4.3) when e=-+7/2 and to (4.4) when €=0.

On the other hand, in order to compare this procedure
with the usual contraction of the Poincaré to the Galilei
group when ¢— 0, we now confront (4.2) with the commu-
tation relations obtained from the Poincaré algebra after the
application of the limiting process, but where the terms up to
first order in 1/¢? are still taken into account’:

[LoL)=ieyL,, [LoK;]=i€uKs

(LpP)=iepPr, [PpP]= (L H']=[P,H]=0,

(K H'|=iP, [K,K1=—(/cHeuly

(K P =(/c)o H +ind,.
We see that (4.6) can be obtained from (4.2) provided we
put
B=+i/c, 5=0.

This transformation is also obtained from (4.5) when

a=1, v arbitrary,

1792 J. Math. Phys., Vol. 19, No. 8, August 1978

€=+-1/c. Notice that the arbitrarity of & in (4.4) is only
attained when €=0. Therefore it is not restrictive to put
6=0, in general, as we have done in (4.5) to define the
parametrization.

Within the parametrization (4.5) we have been able to
reproduce the usual contraction ¢— o, both when first-or-
der terms in 1/¢? are considered and also when the limit is
fully applied. Observe that the full contraction corresponds
to a finite jump from + /2 to 0 of the parameter €, while the
supression of the terms of first order in 1/¢? (i.e., the last step
of the full contraction) only amounts to a correspondingly
infinitesimal change from e=+1/c¢ to €=0.

5. CONCLUSIONS

We have seen that Poincaré algebra is a subalgebra of
complex Galilei algebra while the Galilei algebra is a subal-
gebra of the ordinary Poincaré algebra, if we consider them
in arbitrary dimensional space. And this has been shown by
means of very simple linear changes of coordinates: the light-
cone transformation' in one case and an imaginary coordi-
nate transformation® in the other. The physical relevance of
this result lies in the fact that, whatever be the invariance
group of the physical theory that we take at the beginning
(Poincaré or Galilei ) it is always possible to extract a theory,
in a space with one dimension less, invariant under the other
group.

Making use of a convenient parametrization of the
imaginary transformation,’ we realized that the usual proce-
dure of contraction of the Poincaré to the Galilei group can
be put into the form of a change of the space-time
coordinates.
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Direct-inverse problems in transport theory. 1. The inverse

problem?
Madhoo Kanal and Harry E. Moses

University of Lowell, College of Pure and Applied Science, Center for Atmospheric Research,

Lowell, Massachusetts
(Received 3 March 1978)

For the inverse problem treated here we use the results of an experiment which measures the total angular-
dependent column density as compared to the measurement which provides information on the angle
integrated spatial-dependent angular density (or the specific intensity). We use two methods of approach.
One, the Legendre expansion method and two a maximal variational principle. In particular we
demonstrate how the variational principle yields a very convenient representation of the scattering kernel
(or the phase function) in terms of a basis consisting of Case eigenfunctions for the isotropically scattering

medium.

1. INTRODUCTION

The object of the direct problem of transport theory,
(e.g., neutron or radiative) the usual problem treated, is to
find the distribution function for a given scattering function.
By contrast, the inverse problem involves construction of the
scattering function from the results of some simple experi-
ment which gives some knowledge of the distribution func-
tion. For the inverse problem in general, it is usually not
clear with regard to the nature of the minimal set of measure-
ments one needs in order to construct the scattering function
uniquely. For instance, consider a relatively simple case of
transport of monoenergetic neutrons in a medium with a
homogeneous mixture of different nuclear species. If the an-
gular scattering differential cross section associated with
each species is different, then it would appear to be difficult
to devise an experiment from which any set of measurements
can lead to a unique conclusion for the shape of the angular
differential cross section for each nuclear species. If one had
amedium consisting of only one nuclear species, which is not
necessarily homogeneously distributed, then certain rela-
tively simple measurements will lead to a unique determina-
tion of the differential cross section. The reason is simply
that in that case the secondary production function, which is
the ratio of the rate at which the neutrons are elastically
scattered to the rate at which the scattering involves all nu-
clear processes, become independent of the density of that
nuclear species and depends only on its scattering properties.
Similar considerations apply to problems of radiative trans-
fer and, inter alia, the problem of transport of hyperthermal
electrons in a plasma containing a substantial amount of
neutral species of various kinds.

2. DIRECT INVERSE PROBLEMS

For our presentation of the direct inverse problems in
transport theory we consider an infinite medium with a
plane source at x =x, emitting one-speed neutrons in a direc-
tion whose cosine is p,. For the one-dimensional time-inde-
pendent, and azimuthally symmetric case, the standard neu-
tron transport equation is'

2)Research sponsored by the Office of Naval Research.
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oV ! , ’ ,
B2 )+ W= £ f A S ¥ o)
+8(x —x0)8(1 — o) (1)

where, ¢ < 1 (nonmultiplying medium), WV is the distribution
function and A{pu'—p) is the normalized symmetric scatter-
ing function, i.e.,

1
%J du’ f(p'—p)=1. (2)
—1

For the direct problem, f{u'— ) is given and W is to be deter-
mined everywhere. For the inverse problem certain results of
an experiment are given and then f{u'—p) is to be construct-
ed from those measurements.

In an earlier paper,’ Case presents an elegant method of
solving the inverse problem. The essence of his procedure is
that, if one expands the scattering function in terms of Le-
gendre polynomials so that

Sw—h)= 3 QI+ D PARIPAW, (3)
=0

then for the unit isotropic plane source the expansion
coefficients

gh=1~-cf; (4)

are determined from the measurement of the density of neu-
trons as a function of x. Therefore, as Case has shown from
the direct problem, one has the spectral representation of the
total density [®(x)]

@(x)szﬂ’.(ﬁe—txvv, (5)
0 v

where p(v) is the spectral function given by

apv) _ _dv
v Nw)’
S(v—v))d
=Z—("N"')v, lv]>1, (6)

<vgl

where N(v) and N, are the normalizations of the eigenfunc-
tions of the continuous and discrete spectra, respectively.
For the inverse problem he states that, given the measure-
ment of the total density ®(x ), one knows quite a bit about
the spectral density from Eq. (5). We will not give further
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details here as to how this argument actually leads to the
determination of the expansion coefficients g(/) and hence
Sp'—p) (see Refs. 2 and 3 for a complete discussion ).

We wish to present a different method in the present
paper for dealing with the inverse problem. In contrast to the
data used in Case’s approach we require the measurement of
the angular column density M,(, o) of neutrons for a unit
plane source emitting neutrons in one direction p, (mono-
directional). In other words, the experiment should provide
the information on the quantity

Mo pio) = f dx W, popao) )

where W (x,u—L,) is the angular density of neutrons satisfy-
ing Eq. (1).

Clearly My(u, o) is the angle-dependent zeroth mo-
ment of the distribution function (the angular density)
which is related to the scattering function. That relation is
readily obtained from Eq. (1) by integration with respect to
x. With the appropriate boundary conditions that ¥ vanish-
es at x= o, we have from Eq. (1)

1
Mo p)=8(u-pio) + — A S M o).
(8)

This is a Fredholm type of an integral equation for My(u, )
which involves the scattering function as the kernel. If we let

1
So(bopte) = f A S M ) 9)

then So(p, o) (the emission term) also satisfies a similar type
of an integral equation. That equation is readily obtained by
multiplying Eq. (8) by f{js—p.1) and integrating with respect
to p. With change of names of variables we have

1
So(s o) =fpo—p) + —;— J-_ 1du’ S —w)So(p's o).
(10)

For convenience we write Eq. (8) as

M o(aft) =8 —po) + %So(,u,,uo) : (11)

Before addressing the Direct Inverse problems, we wish to
point out that if in the integral equations (8) and (10) the
kernel f(u—>po) satisfies certain properties then there is a
maximal variational principle* which can be used to solve
such equations. Explicitly, if f( p— ) satisfies the following
properties:

(a) f{pu—po) is symmetric in W, o,
(b) flp—rp,) >0, for —1<(pu,pmo) <1,

1
(c) %f dp’ flp—po<l, —I<p<l e <1,
—~1
then the functional
1
Fy[n]= f ldp n(u,uo)[ 2R s o) — n(ps o)

1
+ £ [ aw f—pntu' o) (12)
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is an absolute maximum if and only if n(j,p,) is an exact
solution of the integral equation (10). Or conversely, as in
the inverse problem, if we consider Eq. (10) as an integral
equation for f(puy—p) so that

1
Spo—p) =So(p,po) — % L ‘du' So(p/s o) (' —p),

(13a)
then the functional
1
Filn] =f ]du n(uo,u)[ 28o(1s po) — 1 (po, )
- 1
- %J dp’ So(p',uo)n(u’,u)] (13b)
—1

is an absolute maximum if and only if #n (o, i) =f(pe—p) is
the exact solution of the integral equation (13a). This result
follows from the fact that So(j,,) is symmetric and the

operator A corresponding to the integral equation (13a), i.e.

Af=f (13¢c)

is positive definite. In two previous papers by Kanal and
Moses*¢ such a variational principle was used to solve the
problems of inverse scattering and also a demonstration of
its application to the linear transport theory for the isotropic
scattering inhomogeneous media was given. Here for the di-
rect inverse problems we can proceed in two ways. One is to
expand f{ p—p,) in terms of Legendre polynomials and use
their orthogonality property to relate the expansion coeffi-
cients to the Legendre moments of S, (i, o). This method
produces exact solutions. The other way is to use the vari-
ational principle. Use of either method will be dictated by the
kind of an experiment that is required to relate the scattering
function f(u—sp,) to the emission term So(p,p,) oOr vice
versa. We shall illustrate both methods.

A. Inverse Problem by Legendre Expansion

First we note that if f( u—p,) is symmetric then so
is So(p,o). Let us now expand f{pu—p,) in terms of Le-
gendre polynomials so that

flp—po) = S @n+1,P, (WP, (o). (14)

n=0

Insert this expansion in Eq. (10) to obtain
Se(pop) =S Q2n4+1)f,P (WP, (o).
n=0

+ % S Cn+ VAP W) (15)

n=0
where
1
qn(uo)=J dp P, (W)So( pypho). (16)
-1
Using the orthogonality property of Legendre polynomials
1
2
dp P, (n)PLp)= onl, (17)
| anrwren= 52
we conclude from Eq. (15) that
P (18)
2P(po) +cqfpo)
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Note that f; are independent of p,. In consequence one needs
to make the measurement for any one direction p, to deter-
mine all the expansion coefficients f;. In particular, for

po= 1, i.e., for the source emitting neutrons parallel to the x
axis, we have

g1)
= ——— 19
/i 2+cqf1) (1)

This result is really not surprising for a homogeneous medi-
um due to the fact that the medium is rotationally invariant.
However, it is of prime importance for the construction of
S(pu—>po). In particular, if the medium is not drastically
anisotropically scattering, then one needs only a few expan-
sion coefficients and this method becomes very useful.

Now the Legendre moments g,( o) of S;(p,p0) can be
determined from the measurement of the angular column
density M(i, o). In other words, given M,(u,i40), we con-
clude from Eq. (11), that

2= = Uﬁ b PADM Ao —Pp) |- (20)

The quantity ¢ (the secondary production term) is obtained
from Eq. (8) [or from Eq. (11)] by integration with respect
to p so that

L —1
c=1— [J du Mo(f":“o)] . 21)
—1

This is 2 well-known result {cfRef. 1). However, from the
inverse problem point of view we again note that ¢, being
independent of ., is determined from the experiment with
the source emitting neutrons in any arbitrary direction.

It would be interesting to know the degree of anisotropy
of the scattering medium. We can estimate that from the
experiment if ¢,(,) were calculated for all p,, i.e., if we
calculate all the Legendre moments of the column density
[see for example Eq. (19)]. For in that case we obtain from
Eq. (18) the relation

4f,

1
f_l W Pal= Gy

In other words, (P,(u), g{u)) form a biorthogonal set, but
more importantly for /=n we get

nl. (22)

_ @rn+ 1T, (23)
" 44cQn+ DT,
where
1
7= auP a0, (24)

The f,’s will give a2 measure of the degree of anisotropy so
that f,,=0, for n>N.

B. Inverse Problem by the Variational Principle

Expansion in terms of Legendre polynomials is useful
when the situation is not too anisotropic. When one wishes
to consider very anisotropic cases, the variational principle
may be more useful. Thus, consider Eq. (13a) so that
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1
fpopo) =Sulppi)— < [ A S ).
(25)

If n(p, po) =f(u—p,) is the exact solution of Eq. (25), then
the functional defined by (13b) is an absolute maximum.
The value of the functional is

Ffm = % [So(“'oyp'o) —f(}io“"}"o)] (263)

or

i o) ==So( pos pho) — % Fp [fn) (26b)
where £y is a class of trial functions. From (26a) we see that
from the class of functions {f,}, the function which maxi-
mizes the functional (13b) is the desired one. From (26b)
one obtains an upper bound for f{ L—>p,), i.¢., forward scat-
tering for any f,, used.’

To illustrate the application of the variational principle
we now give an example. In analogy with the comparison
potential technique in the inverse scattering theory,® we shall
choose a sequence of trial functions for f{ u—p,) which is
constructed from the complete set of eigenfunctions of the
transport equation with isotropic scattering. In this way some
very elegant results are obtained. Thus, we shall expand
S{p— o) in terms of those eigenfunctions and find that the
expansion coefficients satisfy decoupled integral equations
analogous to Eq. (25) involving the same kernel S (u, o).

For f(u—p,) =1, we have the completeness relation,

1
S(p—po)= o [do () o.(pro) — ppo (1) do-( po)]

0+
1
dv
+| ——=pd (wd,(m), (27)
LN®) po, ()b, (po
where ¢ (1), &, (p) are Case’s' discrete and continuum
eigenfunctions, respectively, defined by

CVy 1
d’oi(”)—iT T (28a)
cv 1
o, (u)="—P—— +A(v)3(v—p), (28b)
2 v—p
AWy =HA (V) +A (V)] (28¢)
1
AD=1-Z [ 9 (28d)
2J 4yz—p
A(v,) =0, (28¢)
cvd c 1
Nop=+—> -=)
o+=+ ) ( -1 Vg) (28f)
N@)=AWA W) (28g)
These eigenfunctions are orthogonal so that
1
[ dndntwrn =0, (299)
1
|| dun ot =, (20b)
1
|| dun .01, 09=N@ow—v). (29¢)
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We remark here that this set of eigenfunctions seems to be
rather natural for the expansion of f{u—sp,) for the reason
that, as we shall see later, for both extreme cases

S{p—po) =1 (isotropic) and f(p—po) =28(p— o), the
variational principle gives exact results. Now consider the
expansion,

Flppio) = N‘ [or (o) Bon(12) — b (1)Bo. ()]
o |
dv
+ B N—(US%(MO)BV(M) (30)
so that
1
Bos )= dun flu—po) o, (0) (31a)
and
i
B = dpp Sl ) (31b)

Since f{pu— o) is symmetric, the expansion (30) on the
right-hand side must also be symmetric in g, .. Inserting
Eq. (30) in the integral equation (25) we get

1

0+

(Bt B )+ | 172 0,008, 0

1
=SO(M;}LO) — % J d}L' Sg(p/,uo)
—1

x{ Nl [ 0. (1)Bos(p") — o (1) Bo- ()]

' dv ,
+ f_‘ N BB )] _ (32)

Upon using the orthogonality properties (29a, b, ¢) in Eq.
(32), we obtain

1
Boy=doy (W)~ = | dp SiwBos(w)  (33)

and
Bw=Aw- < [ dw SwmBG. %)
where
Aoi(u)=£ ldu’u’ do . (W)Se(p', 1) (34a)
A4,(n) =f ld;u'u' oM (TR (TARTHR (34b)

By comparing integral equations (33a, b) with Eq. (25) we
see the obvious parallel and note that variational principles
analogous to that for Eq. (25) can be set up for B, (p) and
B, () to solve the inverse problem. As mentioned earlier the
advantage of dealing with the integral equations for expan-
sion coefficients B, , and B, is that in both extreme cases of
isotropic scattering [f(p—p,) = 1] and when flu—p,) is
purely forward peaked [monodirectional, i.e.,

1f(pu—po) =8(p — )] the variational principle provides
exact solutions for f( u—p,). We may see that as follows:
Consider Eq. (33a) for B, (1) and let the trial function be

q’o.t(ﬂ):aot/‘o.t(ﬂ) (35)
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where a,,_ is a discrete parameter. Also consider the func-
tional for (33a) analogous to (13b)

1
Foul®o,1= [ dp @0, (] 240,00~ @0, ()
1
— %f_l dp’ SO(P'”"")(DO:t(“")] . (36)
Put @, (p) =ay, 4o, (p) in (36) to obtain

FO:t [Aoi] = aoi(q”"aoi)POj: - % acz):th:t» (37)

where

1
Py =j ldp, A3 () (38a)

1 1
0, = Ldp Aoew)| A S WMo, (). (380)

Maximization of the functional F,, [4,__], defined by Eq.
(37), yields

) c Qo:t)_
=14+ =——=}"L 39
Aoy ( + 2 Py, (39)

Similarly for the continuum expansion coefficients B, (u) of
Eq. (33b), if we consider the trial function

Q (w)=a,4,(n), (40)

then the maximization of the functional

F,[®,]= f:ldu @,0] 24,400,

1
- %f ldu’ So(u’,.u)%(u’)] (41)
yields
1)
=(1+ £ ”)—', 42
a=(1+ - (42)
where
1
P,=| dpAX(w), (43a)
-1
1 1
= [ apaw| dwsrmaw). @)
—1 —1

Hence, by replacing B, by ®,, and B, by ®, in Eq. (30),

we have an approximate representation of the phase func-

tion, which is given by

flpsto) = —
pope) = —

0o+

[0t Aot (14 £ fj:)

— o (o) Ao (p)/ (1 + ‘c{ g:: )]

1

S w1+ < f"

dv

t —1 N(v)

). (44)

We may now check the accuracy of the representation
(44) for the two extreme cases when

)1 isotropic
Slp—po) = {28( p— i)  monodirectional. (45)
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For the two cases we conclude from Eq. (25) that

1

S — isotropic,

, ¢ (46)
P 8(p—po) monodirectional.

—c

So(}‘wﬂo):

From Egs. (38a, b) and Eqs. (43a, b) we obtain
go_ﬂ_:_ = & __2 (47)
Py, P, l—c
for both isotropic and monodirectional phase functions,
while

Aoi =4Vo
isotropic (48)
A, (p)=v
and
2
Ao (p)= =) po, (1)
monodirectional. (49)

2
A (W)= T po, (n)
-—C

Thus for the isotropic case we conclude from Egs. (44) and
(48) that

1
Slu—pe) =( —c)( %— [ Do-(1a) + Po (o) ] +j—1 %)

(50)

But the right-hand side of Eq. (50) is merely a unity. This is
easily seen by noting that Case’s eigenfunctions satisfy the
following relations:

1
dup b, =v(1—c), (51a)
-1

1
f dpps b, ()= (Fv0) (1), (51b)
-1

An integration of the completeness relation (27) with re-
spect to u gives

v, U dv v) _
1= 2 ot + [ )1 )
Hence for the isotropic case we obtain in Eq. (50),
S{u—po) =1 (as expected). For the monodirectional phase
function, substitution of Eqs. (49) and (47) in Eq. (44)
merely reproduces the completeness relation (27) save for a
factor of two so that f{pu— o) =28 (p— po); the factor of
two should be there because of the normalization so that

1
%f_ lduﬂu—mo) =1

In conclusion we wish to point out that for the direct
problem one can actually calculate the coefficients 4o, (1)
and 4,(u) in the approximate eigenfunction representation
(44) of flu—po). Let us assume that the right-hand side of
Eq. (44) is an exact representation for some function
Jo(p—po) so that
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Fi(uopto) = -N‘— (Bor (t10) A 00 (1) on— o (t10) A o- (1))

o+

' odv
+f_1 ey 8w, (53)

where a,, a, are defined by (39) and (42) respectively.
This function then corresponds to a situation in which some
(abstract) operator is defined to have the spectral density

dpo(v) _ _dv —1<r<l
v Nwea,
_ ad(v—v)dv 2. 8(v—ve)dv v > 1
NO+ N0+ ’

(54)

Thus, one may use fo( u—Hi,), in analogy with inverse scat-
tering, as a sort of higher order comparison potential. This
offers an alternate method of dealing with the direct problem
when the Legendre expansion is not desirable in the main
transport equation when f{ p—pu,) is highly anisotropic.

For the purpose of the direct problem we now calculate
the coefficients 4, (1) and 4, (p). Thereby we obtain a rela-
tion between the basis used by Case? and the Legendre
polynomials

1
Av(p):f A’ ¢ (@)Solp'ye). (34b)
-1
From Eq. (16) we have
e 2nt1
Siwip) = § 2 Pwa . (55)
n—0

Solving Eq. (18) for ¢, () and substituting that in (55)
yields

So(p'p)= i @n+ 1) f o

PP (56)

From (34b) and (56), we get

4, (p)= f‘, @n+1) ! / "C P (Wv(W, (V) —cb,0 (57)
n=0 —&/p
where
1
W)= dp WP W (58)
and used the fact that
pd, (u)=vd, (1) —vc/2. (59)

Actually, W, (v) are a special case of the orthogonal polyno-
mials obtained from the transport equation by direct expan-
sion of f(u'—u) in terms of Legendre polynomials. In other
words, when f, =§,,, we have from (58), (59) and the re-
currence relation

@n+DpP @)=mn+DP, () +nP, _ () (60)

the three-term pure recurrence relation for W, (v):
(n+DW, (W) +nW,_,(v)=2n+1)(1—cd,0)v W, (v),
n>0 (61)
with Wy(v)=1and W_.(v)=0. That Eq. (61) is a pure three-

term recurrence relation implies that W,(v) are orthogonal
and vice versa. But, more importantly, W,(v) can be easily
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calculated either from Eq. (61) or from its explicit represen-
tation (58). All these considerations apply for 4, 4 (1) by
merely replacing v by +v,, where v, is the zero of the disper-
sion function (28e). We shall defer any further discussion of
the direct problem until Part 2, which will be a sequel to this
paper.
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Corrigendum to “Covariant inverse problem of the calculus

of variations”

Henry F. Ahner and Allan E. Moose

Adelphi University, Garden City, New York, 11530
(Received 21 October 1977)

Our recent work showing how to obtain covariant Lagrangians for certain classes of field equations is
extended to cases where the field appears to order A™ (m < —2) and also to cases where metric variations

are taken.

In a recent paper' we demonstrated that the require-
ment that the Frechet derivative, F 2 ¢, of the expression

1
F=[ 2, w1095 X0 arat, (1)
0
vanishes, implies the Euler-Lagrange equations

N4(yp)=0, (2)

provided N4(p) satisfies the conditions

oNA T+A
= (—1)|"+A|( )
ayB,‘n' EA: A

B
O (3)
A

Vama/ A

Following Atherton and Homsy? we have called such differ-
ential operators potential operators.

It has been brought to our attention® that there exist
certain operators, primarily of mathematical interest, for
which the expression (1) is of order A", m< — 1 and conse-
quently the integral diverges.® It is our purpose here to show
how the Lagrangians may be obtained for m< —2.* We shall
consider two cases. First, those in which fields other than the
metric are varied; second, those in which the metric is varied.

Consider a potential operator N4(y; ,,) for which one or
more terms of N4(yy ) are of order m,, m,, --<—2in A.
Referring to the potential conditions, (3), it may be seen that
terms of differing order m, in A must be individually poten-
tial. Thus, for simplicity, and without loss of generality, we
may consider N4(y; ,) to consist only of terms of the same
order.

Replace Eq. (1) by the more general expression
1

F=[ 5[ SON OS¢ adn s @
0

[We note that if N4(\yg ) is entirely of order m>0in A,
S(A)=1and theresultin Ref. 1 holds.] If we set f{\) =c,,A"™
and proceed to compute the Frechet derivative of (4),
FB,, as in Ref. (1), we obtain

FRo= [ b (1= mN'Gp X—g) a5, (5)

Setting ¢,,=(1—m)™, we find that the requirement that
F8$ =0 implies the Euler-Lagrange equations

NAyp.)=0. (6)
If N4(Ay5, ) is homogeneous in A,
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F=f(l—m)-'yANA(yB,,)(—ng d'x. ™)

When metric variations are considered, questions of
convergence of the A integral in Eq. (1) may be obviated by
the appropriate choice of independent variants. We prefer to
consider g+ as the varied field with covariant (rather than
contravariant) source terms. This has the merit of making
the order of all terms in an expression such as

vasz.v—%gp,vR_kTp,v(E)zo' (8)

positive. Here 7 ,,(E) is the electromagnetic stress-energy
tensor F, F.p—4g, F, FP”, with F, =4, —A, . Note
that if one took g,,, and 4,, as independent variants instead,
the order of T, ,(E) would be A" and our formalism would
not be applicable.

We replace Eq. (1) in these situations by the equally
acceptable alternative

1
F=Jy"f0 N (B, )dA(—g)" d'x. (9)

Itis instructive to obtain the equations of motion for an oper-
ator N,, (g7 ,,) from (9) by requiring that the Frechet de-
rivative, FLB¢B, vanish. We assume at the outset that NV,,,, is
potential. The Frechet derivative of (9) is

1
Fab?— f ¢“"U0 N (ge8)d
1
+g""f prxpod)"” d\
(¢}

1
—gwfo N, (g brg,., dx]<—g)m dx.
(10)

The last term in ( 10) arises from the presence of (—g)'?in
Eq. (9). Following the procedure in Ref. 1 we obtain, after
several steps,

1
Fsb? = [ (N~ 18,077 [ N, 080
X(—g)"* d'x. (11)
Requiring that Fjz¢® =0, we obtain for the equations of mo-
tion

t
No— %g“,gP“L N, (Ag*F)d\=0. (12)

N, o(AgA) in the second term of Eq. (12) will, in general,
consist of a sum of source terms of various orders, m, in A
which we may indicate by writing
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N, po-(kga B)= 2 AN, (m)po *

mp>0

We carry out the integration in Eq. (12) and obtain
Np.v—%gp.vx(l +m)-lgpoN(m)p0=0' (13)

For every order of A™ we may rewrite ¥, in terms of
its trace free part N, and its trace to transform Eq. (13)
into

Ny + (/18 Ny — 38, (m + 1) N, =0.

where N,,,,=g”N,,,. This is equivalent to

Ny, —8yuu[n—=2(m+ D} [2n(m+1)]"'N,,=0.

Thus, we obtain from Eq. (9) trace-free equations of motion
whenever n —2(m + 1)=0. The stress-energy tensor for the
electromagnetic field in four dimensions is the simplest ex-
ample of a trace free term of this type (withm=1).

ERRATA

H.F. Ahner and A.E. Moose, J. Math Phys. 18, 1367 (1977).

R.W. Atherton and G.M. Homsy, Stud. Appl. Math. 54, 31 (1975).

We appreciate communications with D. Lovelock, R. Pavelle, I. Anderson,
G. Horndeski, and S. Aldersley. They pointed out an error in Ref. 1. The
word “equation” should be replaced by the words “scalar equation” in the
sentence following Eq. (24). For a tensor equation the potential conditions
may be satisfied when the field operators are of odd order. A considerable
body of work exists that we were unaware of in which results similar to ours
were derived by other methods. Some of the most pertinent references
include: D. Lovelock and H. Rund, Zensors, Differential Forms and Vari-
ational Principles (Wiley, NewYork, 1975), Chap. 8 and references there-
in; G. W. Horndeski, Tensor 28, 309 (1974); 29, 21 (1975); G. W. Horn-
deski, J. Math. Phys. 17, 1980 (1976); D. Lovelock, J. Math. Phys. 18,
1491 (1977); 1. M. Anderson, “Tensorial Euler-Lagrange Expressions and
Conservation Laws” to appear in Aequations Mathematicae. For flat space
considerations see also R.M. Santilli, Ann. Phys. N.Y. 103, 354 (1977);
103, 409 (1977); 105, 227 (1977). For treatment of antiderivatives, of
variational principles that yield integral equations, and of definitional ques-
tions, see E.P.Hamilton (to appear in J. Math. Anal. Appl.); E.P. Hamil-
ton and B.E. Goodwin, in Analytic Methods in Mathematical Physics, edit-
ed by R.P. Gilbert and R.G. Newton (Gordon and Breach, New York,
1970); E.P. Hamilton, “A New Definition of Variational Derivative”
(preprint).

“Expression (1) fails also when (1) is identically zero.

‘Some m = — 1 cases are considered in S.J. Aldersley, “Higher Euler Opera-
tors and Some of their Applications” (to appear in J. Math. Phys.).

Erratum: The electromagnetic field on a simplicial net

[J. Math. Phys. 16, 2432 (1975)|

Rafael Sorkin

Departments of Applied Mathematics and Astronomy, University College, Cardiff, Wales

(Received 1 March 1978)

P, 2432: A “1” and an “n” have been transposed in
Eq. (5), which should read

n e

N _ 1 n+1 ifj=Fk,
R S I

1 if j+#k.

1800 J. Math. Phys,, Vol. 19, No. 8, August 1978
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P. 2433 (line 14): In place of “... its affine com-
ponents T?..)% read “ .. its affine components T}...}.

'

The same change should be made in Eq. (9) and Eq.
(10) [but the “T” on the lhs of (9) should be left as it is}.

P, 2435 (line 19): In place of “... since ¢, e, =0,
and ...” read “ .. since ¢, ne, =0, and ...”.
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For every order of A™ we may rewrite ¥, in terms of
its trace free part N, and its trace to transform Eq. (13)
into

Ny + (/18 Ny — 38, (m + 1) N, =0.

where N,,,,=g”N,,,. This is equivalent to
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Thus, we obtain from Eq. (9) trace-free equations of motion
whenever n —2(m + 1)=0. The stress-energy tensor for the
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